Vibrational Behavior of Epicyclic Gear Trains With Lumped-Parameter Models: Analysis and Design Optimization Under Uncertainty

Author(s):  
Erich Wehrle ◽  
Ilaria Palomba ◽  
Renato Vidoni

Vibrational behavior of epicyclic gearing a critical aspect as this can lead to detrimental structural-mechanical effects including fatigue, comfort and acoustics. In order to better understand this behavior, lumped-parameter models are used in early development phases. Here the eigenfrequencies as well as frequency responses are ascertained with and without consideration of uncertainty. Uncertainty is critical in the early design phases and beyond. In such systems, there is variation in parameter values from a variety of sources. Here the uncertain stiffness will be considered. It is also the goal of this work to dimension the epicyclic gear train to optimize performance. The early design phase is plagued by uncertainty and if this is neglected in the design optimization, this can lead to drastically suboptimal designs. In this work, a methodology is introduced to optimally design and dimension epicyclic gear trains under uncertainty. Though specifically aimed at epicyclic gearing, the methods developed here are general enough for further application fields. Mass and inertia terms are chosen as design variables, though others are possible in this framework. The constraints are so formulated so that the eigenfrequencies avoid the harmonics of the mesh frequencies and its side bands. The uncertain parameters are treated as bounded and therefore intervals are used instead of statistical distributions. Statistical information needed for probabilistic methods of the uncertain parameters are assumed here to be unavailable in early development phases.

2008 ◽  
Vol 2008 ◽  
pp. 1-12
Author(s):  
G. V. Durga Prasad ◽  
G. Gopa Kishor ◽  
Manmohan Pandey ◽  
Uday S. Dixit

Mathematical modeling and numerical simulation of natural circulation boiling water reactor (NCBWR) are very important in order to study its performance for different designs and various off-design conditions and for design optimization. In the present work, parametric studies of the primary heat transport loop of NCBWR have been performed using lumped parameter models and RELAP5/MOD3.4 code. The lumped parameter models are based on the drift flux model and homogeneous equilibrium mixture (HEM) model of two-phase flow. Numerical simulations are performed with both models. Compared to the results obtained from the HEM model, those obtained from the drift flux model are closer to RELAP5. The variations of critical heat flux with various geometric parameters and operating conditions are thoroughly investigated. The material required to construct the primary heat transport (PHT) loop of NCBWR has been minimized using sequential quadratic programming. The stability of NCBWR has also been verified at the optimum point.


2017 ◽  
Vol 139 (6) ◽  
Author(s):  
Vinjamuri Venkata Kamesh ◽  
Kuchibhotla Mallikarjuna Rao ◽  
Annambhotla Balaji Srinivasa Rao

Epicyclic gear trains (EGTs) are used in the mechanical energy transmission systems where high velocity ratios are needed in a compact space. It is necessary to eliminate duplicate structures in the initial stages of enumeration. In this paper, a novel and simple method is proposed using a parameter, Vertex Incidence Polynomial (VIP), to synthesize epicyclic gear trains up to six links eliminating all isomorphic gear trains. Each epicyclic gear train is represented as a graph by denoting gear pair with thick line and transfer pair with thin line. All the permissible graphs of epicyclic gear trains from the fundamental principles are generated by the recursive method. Isomorphic graphs are identified by calculating VIP. Another parameter “Rotation Index” (RI) is proposed to detect rotational isomorphism. It is found that there are six nonisomorphic rotation graphs for five-link one degree-of-freedom (1-DOF) and 26 graphs for six-link 1-DOF EGTs from which all the nonisomorphic displacement graphs can be derived by adding the transfer vertices for each combination. The proposed method proved to be successful in clustering all the isomorphic structures into a group, which in turn checked for rotational isomorphism. This method is very easy to understand and allows performing isomorphism test in epicyclic gear trains.


Author(s):  
Matthew G Doyle ◽  
Marina Chugunova ◽  
S Lucy Roche ◽  
James P Keener

Abstract Fontan circulations are surgical strategies to treat infants born with single ventricle physiology. Clinical and mathematical definitions of Fontan failure are lacking, and understanding is needed of parameters indicative of declining physiologies. Our objective is to develop lumped parameter models of two-ventricle and single-ventricle circulations. These models, their mathematical formulations and a proof of existence of periodic solutions are presented. Sensitivity analyses are performed to identify key parameters. Systemic venous and systolic left ventricular compliances and systemic capillary and pulmonary venous resistances are identified as key parameters. Our models serve as a framework to study the differences between two-ventricle and single-ventricle physiologies and healthy and failing Fontan circulations.


Author(s):  
Sridhar Kota ◽  
Srinivas Bidare

Abstract A two-degree-of-freedom differential system has been known for a long time and is widely used in automotive drive systems. Although higher degree-of-freedom differential systems have been developed in the past based on the well-known standard differential, the number of degrees-of-freedom has been severely restricted to 2n. Using a standard differential mechanism and simple epicyclic gear trains as differential building blocks, we have developed novel whiffletree-like differential systems that can provide n-degrees of freedom, where n is any integer greater than two. Symbolic notation for representing these novel differentials is also presented. This paper presents a systematic method of deriving multi-degree-of-freedom differential systems, a three and four output differential systems and some of their practical applications.


2021 ◽  
Author(s):  
Kasimir Forth ◽  
Jimmy Abualdenien ◽  
André Borrmann ◽  
Sabrina Fellermann ◽  
Christian Schunicht

Sign in / Sign up

Export Citation Format

Share Document