On Computation of Approximate Lyapunov-Perron Transformations

Author(s):  
Ashu Sharma ◽  
Subhash C. Sinha

Abstract Many dynamical systems can be modeled by a set of linear/nonlinear ordinary differential equations with quasi-periodic coefficients. Application of Lyapunov-Perron (L-P) transformations to such systems produce dynamically equivalent systems in which the linear parts are time-invariant. In this work, a technique for the computation of approximate L-P transformations is suggested. First, a quasi-periodic system is replaced by a periodic system with a ‘suitable’ large principal period to which Floquet theory can be applied. Then, the state transition matrix (STM) of the periodic system is computed in the symbolic form using shifted Chebyshev polynomials and Picard iteration method. Finally, since the STM can be expressed in terms of a periodic matrix and a time-invariant matrix (Lyapunov-Floquet theorem), this factorization is utilized to compute approximate L-P transformations. A two-frequency quasi-periodic system is investigated using the proposed method and approximate L-P transformations are generated for stable, unstable and critical cases. These transformations are also inverted by defining the adjoint system to the periodic system. Unlike perturbation and averaging, the proposed technique is not restricted by the existence of a generating solution and a small parameter. Approximate L-P transformations can be utilized to design controllers using time-invariant methods and may also serve as a powerful tool in bifurcation studies of nonlinear quasi-periodic systems.

Author(s):  
Ashu Sharma ◽  
S. C. Sinha

Parametrically excited linear systems with oscillatory coefficients have been generally modeled by Mathieu or Hill equations (periodic coefficients) because their stability and response can be determined by Floquét theory. However, in many cases, the parametric excitation is not periodic but consists of frequencies that are incommensurate, making them quasi-periodic. Unfortunately, there is no complete theory for linear dynamic systems with quasi-periodic coefficients. Motivated by this fact, in this work, an approximate approach has been proposed to determine the stability and response of quasi-periodic systems. It is suggested here that a quasi-periodic system may be replaced by a periodic system with an appropriate large principal period and thus making it suitable for an application of the Floquét theory. Based on this premise, a systematic approach has been developed and applied to three typical quasi-periodic systems. The approximate boundaries in stability charts obtained from the proposed method are very close to the exact boundaries of original quasi-periodic equations computed numerically using maximal Lyapunov exponents. Further, the frequency spectra of solutions generated near approximate and exact boundaries are found to be almost identical ensuring a high degree of accuracy. In addition, state transition matrices (STMs) are also computed symbolically in terms of system parameters using Chebyshev polynomials and Picard iteration method. Stability diagrams based on this approach are found to be in excellent agreement with those obtained from numerical methods. The coefficients of parametric excitation terms are not necessarily small in all cases.


Author(s):  
Ashu Sharma

Abstract A new technique for the analysis of dynamical equations with quasi-periodic coefficients (so-called quasi-periodic systems) is presented. The technique utilizes Lyapunov-Perron (L-P) transformation to reduce the linear part of a quasi-periodic system into the time-invariant form. A general approach for the construction of L-P transformations in the approximate form is suggested. First, the linear part of a quasi-periodic system is replaced by a periodic system with a 'suitable' large principal period. Then, the state transition matrix of the periodic system is computed in the symbolic form using Floquet theory. Finally, Lyapunov-Floquet theorem is used to compute approximate L-P transformations. A two-frequency quasi-periodic system is studied and transformations are generated for stable, unstable and critical cases. The effectiveness of these transformations is demonstrated by investigating three distinct quasi-periodic systems. They are applied to a forced quasi-periodic Hill equation to generate analytical solutions. It is found that the closeness of the analytical solutions to the exact solutions depends on the principal period of the periodic system. A general approach to obtain the stability bounds on linear quasi-periodic systems with stochastic perturbations is also discussed. Finally, the usefulness of approximate L-P transformations to nonlinear quasi-periodic systems is presented by analyzing a quasi-periodic Hill equation with cubic nonlinearity using time-dependent normal form theory. The closed-form solution generated is found to be in good agreement with the exact solution.


Author(s):  
Susheelkumar C. Subramanian ◽  
Sangram Redkar ◽  
Peter Waswa

Abstract It is known that a Lyapunov Perron (L-P) transformation converts a quasi-periodic system into a reduced system with a time-invariant coefficient. Though a closed form expression for L-P transformation matrix is missing in the literature, the application of combination of multiple theories would aid in such transformation. In this work, the authors have worked on extending the Floquet theory to find L-P transformation. As an example, a commutative system with linear quasi-periodic coefficients is transformed into a system with time-invariant coefficient analytically. Furthermore, for non-commutative systems, similar results are obtained in this work, with the help of an intuitive state augmentation and Normal Forms technique. The results of the reduced system are compared with the numerical integration technique for validation.


2021 ◽  
Author(s):  
Ashu Sharma

Abstract Lyapunov-Floquet (L-F) transformations reduce linear ordinary differential equations with time-periodic coefficients (so-called linear time-periodic systems) to equations with constant coefficients. The present work proposes a simple approach to construct L-F transformations. The solution of a linear time-periodic system can be expressed as a product of an exponential term and a periodic term. Using this Floquet form of a solution, the ordinary differential equation corresponding to a linear time-periodic system reduces to an eigenvalue problem. Next, eigenanalysis is performed to obtain the general solution and subsequently, the state transition matrix of the time-periodic system is constructed. Then, the Lyapunov-Floquet theorem is used to compute L-F transformation. The inverse of L-F transformation is determined by defining the adjoint system to the time-periodic system. Mathieu equation is investigated in this work and L-F transformations and their inverse are generated for stable and unstable cases. These transformations are very useful in the design of controllers using time-invariant methods and in the bifurcation studies of nonlinear time-periodic systems.


2012 ◽  
Vol 2012 ◽  
pp. 1-18 ◽  
Author(s):  
Xiaoli Bai ◽  
John L. Junkins

The halo orbits around the Earth-MoonL2libration point provide a great candidate orbit for a lunar communication satellite, where the satellite remains above the horizon on the far side of the Moon being visible from the Earth at all times. Such orbits are generally unstable, and station-keeping strategies are required to control the satellite to remain close to the reference orbit. A recently developed Modified Chebyshev-Picard Iteration method is used to compute corrective maneuvers at discrete time intervals for station-keeping of halo orbit satellite, and several key parameters affecting the mission performance are analyzed through numerical simulations. Compared with previously published results, the presented method provides a computationally efficient station-keeping approach which has a simple control structure that does not require weight turning and, most importantly, does not need state transition matrix or gradient information computation. The performance of the presented approach is shown to be comparable with published methods.


2020 ◽  
Vol 16 (1) ◽  
Author(s):  
Susheelkumar C. Subramanian ◽  
Sangram Redkar

Abstract In this work, the authors draw comparisons between the Floquet theory and Normal Forms technique and apply them towards the investigation of stability bounds for linear time periodic systems. Though the Normal Forms technique has been predominantly used for the analysis of nonlinear equations, in this work, the authors utilize it to transform a linear time periodic system to a time-invariant system, similar to the Lyapunov–Floquet (L–F) transformation. The authors employ an intuitive state augmentation technique, modal transformation, and near identity transformations to facilitate the application of time-independent Normal Forms. This method provides a closed form analytical expression for the state transition matrix (STM). Additionally, stability analysis is performed on the transformed system and the comparative results of dynamical characteristics and temporal variations of a simple linear Mathieu equation are also presented in this work.


Author(s):  
Ashu Sharma ◽  
Subhash C. Sinha

Parametrically excited systems are generally represented by a set of linear/nonlinear ordinary differential equations with time varying coefficients. In most cases, the linear systems have been modeled by Mathieu or Hill equations (periodic coefficients) because their stability and response can be determined by Floquét theory. However, in many cases the parametric excitation is not periodic but consists of frequencies that are incommensurate, making them quasi-periodic. Unfortunately, there is no complete theory for linear dynamic systems with quasi-periodic coefficients. Motivated by this fact, in this work, an approximate approach has been proposed to determine the stability and response of quasi-periodic systems. Although Floquét theory is applicable only to periodic systems, it is suggested here that a quasi-periodic system may be replaced by a periodic system with an appropriate large principal period and thus making it suitable for an application of the Floquét theory. Based on this premise, a systematic approach has been developed and applied to two typical quasi-periodic systems. The approximate boundaries in stability charts obtained from the proposed method are extremely close to the exact boundaries of the original quasi-periodic equations. The exact boundaries are detected by computing the maximal Lyapunov exponents. Further, the frequency spectra of solutions generated near approximate and exact boundaries are found to be almost identical ensuring a high degree of accuracy. The coefficients of the parametric excitation terms are not necessarily small in all cases. ‘Instability loops’ or ‘Instability pockets’ that appear in the stability diagram of Meissner’s equation are also observed in one case presented here. The proposed approximate approach would allow one to construct Lyapunov-Perron (L-P) transformation matrices that reduce quasi-periodic systems to systems whose linear parts are time-invariant. The L-P transformation would pave the way for controller design and bifurcation analysis of quasi-periodic systems.


2015 ◽  
Vol 62 (2) ◽  
pp. 148-167 ◽  
Author(s):  
Julie L. Read ◽  
Ahmad Bani Younes ◽  
Brent Macomber ◽  
James Turner ◽  
John L. Junkins

2021 ◽  
pp. 1-26
Author(s):  
Susheelkumar Cherangara Subramanian ◽  
Sangram Redkar

Abstract This paper depicts the application of symbolically computed Lyapunov Perron (L-P) Transformation to solve linear and nonlinear quasi-periodic systems. The L-P transformation converts a linear quasi-periodic system into a time-invariant one. State augmentation and the method of Normal Forms are used to compute the L-P transformation analytically. The state augmentation approach converts a linear quasi-periodic system into a nonlinear time invariant system as the quasi-periodic parametric excitation terms are replaced by ‘fictitious’ states. This nonlinear system can be reduced to a linear system via Normal Forms in the absence of resonances. In this process, one obtains near identity transformation that contains fictitious states. Once the quasi-periodic terms replace the fictitious states they represent, the near identity transformation is converted to the L-P transformation. The L-P transformation can be used to solve linear quasi-periodic systems with external excitation and nonlinear quasi-periodic systems. Two examples are included in this work, a commutative quasi-periodic system and a non-commutative Mathieu-Hill type quasi-periodic system. The results obtained via the L-P transformation approach match very well with the numerical integration and analytical results.


Sign in / Sign up

Export Citation Format

Share Document