floquet theorem
Recently Published Documents


TOTAL DOCUMENTS

30
(FIVE YEARS 5)

H-INDEX

7
(FIVE YEARS 0)

Entropy ◽  
2021 ◽  
Vol 23 (8) ◽  
pp. 927
Author(s):  
Guiyun Liu ◽  
Ziyi Huang ◽  
Xilai Wu ◽  
Zhongwei Liang ◽  
Fenghuo Hong ◽  
...  

With the development of wireless sensor networks (WSNs), energy constraints and network security have become the main problems. This paper discusses the dynamic of the Susceptible, Infected, Low-energy, Susceptible model under pulse charging (SILS-P) in wireless rechargeable sensor networks. After the construction of the model, the local stability and global stability of the malware-free T-period solution of the model are analyzed, and the threshold R0 is obtained. Then, using the comparison theorem and Floquet theorem, we obtain the relationship between R0 and the stability. In order to make the conclusion more intuitive, we use simulation to reveal the impact of parameters on R0. In addition, the paper discusses the continuous charging model, and reveals its dynamic by simulation. Finally, the paper compares three charging strategies: pulse charging, continuous charging and non-charging and obtains the relationship between their threshold values and system parameters.


2020 ◽  
Vol 5 (1) ◽  
Author(s):  
Zhigang Song ◽  
Lin-Wang Wang

Abstract Floquet states are a topic of intense contemporary interest, which is often induced by coherent external oscillating perturbation (e.g., laser, or microwave) which breaks the continuous time translational symmetry of the systems. Usually, electron–phonon coupling modifies the electronic structure of a crystal as a non-coherent perturbation and seems difficult to form Floquet states. Surprisingly, we found that the thermal equilibrium electron–phonon coupling in M(MoS)3 and M(MoSe)3 (where M is a metallic element) exhibits a coherent behavior, and the electronic structure can be described by the Floquet theorem. Such a coherent Floquet state is caused by a selective giant electron–phonon coupling, with thermodynamic phonon oscillation serving as a driving force on the electronic part of the system. The quasi-1D Dirac cone at the Fermi energy has its band gap open and close regularly. Similarly, the electric current will oscillate even under a constant voltage.


2019 ◽  
Vol 220 (3) ◽  
pp. 1947-1955
Author(s):  
Alexey Stovas ◽  
Yuriy Roganov ◽  
Vyacheslav Roganov

SUMMARY Application of the Floquet theorem and the matrix propagator method reduces the problem of the plane wave propagation in a periodically layered anisotropic media, to analysis of the properties of stationary envelopes of different wave modes propagating up- and downwards. We analyse the interchanging of stop- and pass-bands and their structure at low frequencies for a periodically layered medium with monoclinic symmetry. The analysis shows the effect of interaction between P,S1 and S2 wave multipliers for stop- and pass-band structure and gives insight into the wave propagation in vertically heterogeneous anisotropic media which is important in modelling and interpretation of seismic data.


2019 ◽  
Vol 19 (09) ◽  
pp. 1950095
Author(s):  
Z. G. Ying ◽  
Y. Q. Ni ◽  
L. Fan

A direct eigenvalue analysis approach for solving the stability problem of periodically supported beams with multi-mode coupling vibration under general harmonic excitations is developed based on the Floquet theorem, Fourier series and matrix eigenvalue analysis. The transverse periodic supports are considered for improving the parametrically excited stability of beams under longitudinal periodic excitations. The dynamic stability of parametrically excited vibration of the beam with transverse spaced supports under longitudinal harmonic excitations is studied. The partial differential equation of motion of the beam with spaced supports under harmonic excitations is given and converted into ordinary differential equations with time-varying periodic parameters using the Galerkin method, which describe the parametrically excited vibration of the beam with coupled multiple modes. The fundamental solution to the equations is expressed as the product of periodic and exponential components based on the Floquet theorem. The periodic component and periodic parameters are expanded into Fourier series, and the matrix eigenvalue equation is obtained which is used for directly determining the parametrically excited stability. The dynamic stability of parametrically excited vibration of the beam with spaced supports under harmonic excitations is illustrated by numerical results on unstable regions. The influence of the periodic supports and excitation parameters on the parametrically excited stability is explored. The parametrically excited stability of the beam with multi-mode coupling vibration can be improved by the periodic supports. The developed analysis method is applicable to more general period-parametric beams with multi-mode coupling vibration under various harmonic excitations.


Author(s):  
Ashu Sharma ◽  
Subhash C. Sinha

Abstract Many dynamical systems can be modeled by a set of linear/nonlinear ordinary differential equations with quasi-periodic coefficients. Application of Lyapunov-Perron (L-P) transformations to such systems produce dynamically equivalent systems in which the linear parts are time-invariant. In this work, a technique for the computation of approximate L-P transformations is suggested. First, a quasi-periodic system is replaced by a periodic system with a ‘suitable’ large principal period to which Floquet theory can be applied. Then, the state transition matrix (STM) of the periodic system is computed in the symbolic form using shifted Chebyshev polynomials and Picard iteration method. Finally, since the STM can be expressed in terms of a periodic matrix and a time-invariant matrix (Lyapunov-Floquet theorem), this factorization is utilized to compute approximate L-P transformations. A two-frequency quasi-periodic system is investigated using the proposed method and approximate L-P transformations are generated for stable, unstable and critical cases. These transformations are also inverted by defining the adjoint system to the periodic system. Unlike perturbation and averaging, the proposed technique is not restricted by the existence of a generating solution and a small parameter. Approximate L-P transformations can be utilized to design controllers using time-invariant methods and may also serve as a powerful tool in bifurcation studies of nonlinear quasi-periodic systems.


IEEE Access ◽  
2018 ◽  
Vol 6 ◽  
pp. 71743-71750 ◽  
Author(s):  
Fatemeh Ghasemifard ◽  
Martin Norgren ◽  
Oscar Quevedo-Teruel ◽  
Guido Valerio
Keyword(s):  

2016 ◽  
Vol 93 (3) ◽  
Author(s):  
C. M. Dai ◽  
Z. C. Shi ◽  
X. X. Yi
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document