Piezoelectric Subordinate Oscillator Arrays: Performance Recovery and Robustness to Uncertainty

Author(s):  
John Sterling ◽  
Sai Tej Paruchuri ◽  
Pablo Tarazaga ◽  
Joseph Vignola ◽  
Andrew Kurdila ◽  
...  

Abstract Prior work demonstrates that an attached subordinate oscillator array (SOA) can attenuate vibration of a host structure. The distribution of masses and stiffnesses of the attached oscillators can craft a flat frequency response over a desired band. This response modification can be a significant improvement over classical dynamic vibration absorbers (DVA) that attenuate response at one target frequency while increasing the frequency response amplitude at nearby side frequencies. Performance of the SOA can be highly sensitive to the uncertainty or disorder in the mechanical properties of the system. This paper shows that use of piezolectric SOAs (PSOAs) has the potential to address and ameliorate such sensitivity to off-design situations. It is important to note that the design strategy is simple and effective: it can be carried out without optimization techniques by choosing simple or well-known distributions of electromechanical properties.

2020 ◽  
Author(s):  
John Sterling ◽  
Sai Tej Paruchuri ◽  
Teresa Jean Ryan ◽  
Joseph Vignola ◽  
Andrew J. Kurdila

Prior work demonstrates that an attached subordinate oscillator array (SOA) can attenuate vibration of a host structure over a frequency range of interest. A judicious choice of the distribution of masses and stiffnesses of the attached oscillators can result in a relatively flat frequency response of for the host structure over a desired band. This response modification can be a significant improvement over classical dynamic vibration absorbers (DVA) that attenuate a structure's response at one target frequency while increasing the frequency response amplitude at nearby side frequencies. Performance of the SOA can be highly sensitive to the uncertainty or disorder in the mechanical properties of the system. This paper introduces a novel design strategy that can make use of either 3D-printing or piezoelectric SOAs (PSOAs). These strategies have the potential to address and ameliorate such sensitivity to error. It is important to note that the design strategy is simple and effective in that it can be carried out without computational optimization techniques by choosing simple or well-known distributions of properties.


Author(s):  
Sai Tej Paruchuri ◽  
Andrew Kurdila ◽  
Joseph Vignola

Subordinate Oscillator Arrays (SOAs) have been shown to be effective methods for band-limited vibration attenuation. However, SOAs are very sensitive to error in parameter distributions. Slight disorder in structural parameters can render an SOA ineffective. Recent research has shown that Piezoelectric SOAs (PSOAs) provide an alternative that can limit the degradation of the frequency response function due to the disorder. The capacitive shunts attached to such SOAs can be tuned to change overall electromechanical properties of the SOA post-fabrication. The conventional methods of tuning, which study the Frequency Response Function (FRF) of each oscillator in the array, can be an extremely time-consuming process. To apply a systematic approach to tuning, an estimate of the disorder in structural property distributions can be crucial. In this paper, we discuss a simple and effective methodology to estimate the actual structural parameters and subsequently tune the PSOA to ameliorate the effect of disorder. We derive an adaptive estimation technique for PSOAs and present numerical results that demonstrate improved vibration attenuation of this approach.


2015 ◽  
Vol 37 (4) ◽  
pp. 275-284
Author(s):  
La Duc Viet ◽  
Nguyen Ba Nghi

Vibration of a pendulum can be reduced by single dynamic vibration absorbers (DVAs) moving in tangential or in normal direction of pendulum's orbit. The first DVA works in the linear zone while the second one works in the nonlinear zone. This paper uses the equivalent linearization technique to obtain an analytical form of the frequency response of a nonlinear pendulum structure, which is attached with both types of DVA. The numerical calculations are carried out to verify the analytical results. Some useful conclusions on the optimal parameters of the DVA can be found from the analytical solution.


1986 ◽  
Vol 108 (4) ◽  
pp. 427-433 ◽  
Author(s):  
Eugene I. Rivin

Naturally limited stiffness of cantilever elements due to lack of constraint from other structural components, together with low structural damping, causes intensive and slow-decaying transient vibrations as well as low stability margins for self-excited vibrations. In cases of dimensional limitations (e.g., boring bars), such common antivibration means as dynamic vibration absorbers have limited effectiveness due to low mass ratios. This paper describes novel concepts of structural optimization of cantilever components by using combinations of rigid and light materials for their design. Two examples are given: tool holders (boring bars) and robot arms. Optimized boring bars demonstrate substantially increased natural frequencies, together with the possibility of greatly enhanced mass ratios for dynamic vibration absorbers. Machining tests with combination boring bars have been performed in comparison with conventional boring bars showing superior performance of the former. Computer optimization of combination-type robot arms has shown a potential of 10–60 percent reduction in tip-of-arm deflection, together with a commensurate reduction of driving torque for a given acceleration, and a higher natural frequencies (i.e., shorter transients). Optimization has been performed for various ratios of bending and joint compliance and various payloads.


Author(s):  
Bohdan M. Diveyev ◽  
Zinovij A. Stotsko

The main aim of this paper is improved dynamic vibration absorbers design with taking into account complex rotating machines dynamic The is considered for the complex vibroexitated constructions. Methods of decomposition and the numerical schemes synthesis are considered on the basis of new methods of modal methods. Development of of complicated machines and buildings in view of their interaction with system of dynamic vibration absorbers is under discussion.


2021 ◽  
Author(s):  
Xingbao Huang ◽  
Xiao Zhang ◽  
Bintang Yang

Abstract This paper introduces an energy conversion inspired vibration control methodology and presents a representative prototype of tunable bi-stable energy converters. This work is concerned on improving the vibration absorption and energy conversion performance of tunable bi-stable clustered energy conversion inspired dynamic vibration absorbers (EC-DVAs). The deterministic parametric analysis of the energy transfer performance of clustered EC-DVAs is conducted. Firstly, nonlinear vibration behaviors including transient energy transfer and snap-through motions are studied, and then effects of EC-DVA number on vibration control is investigated. Furthermore, the optimal computation based on adjusting the length ratio (namely bi-stable potential barrier height) is developed to obtain the maximum energy conversion efficiency of clustered EC-DVAs and the minimum residual kinetic energy of the primary system considering different number of clustered EC-DVAs. Moreover, the optimal calculation based on optimal EC-DVA number is also developed to achieve the most excellent vibration absorption and energy conversion performance. Finally, the optimal calculation based on optimal mass ratio is conducted. Numerical simulations show that when the total mass ratio is constant the snap-through motions of each EC-DVA depend remarkably on EC-DVA number; the energy conversion efficiency and residual kinetic energy after dynamic length ratio optimization is independent on ambient input energy and EC-DVA number; The energy conversion efficiency and vibration absorption performance based on optimal EC-DVA number maintain high efficiency and stable when the ambient input energy or the potential energy of clustered EC-DVAs varies. The optimal mass ratio is large when the system’s potential barrier is too large and the ambient input energy is small. Therefore, the presented tunable bi-stable system of clustered EC-DVAs with appropriate bi-stable potential function and proposed optimization strategies is a potential alternative for vibration control of mechanical components exposed to varying impulses.


Sign in / Sign up

Export Citation Format

Share Document