Period-1 to Period-2 Motions in a Discontinuous Oscillator

Author(s):  
Siyu Guo ◽  
Albert C. J. Luo

Abstract In this paper, grazing bifurcations on bifurcation trees in a discontinuous dynamical oscillator are discussed. Once the grazing bifurcation occurs, periodic motions switches from the old motion to a new one. Thus, grazing bifurcations on a bifurcation tree of period-1 to period-2 motions varying spring stiffness are presented in a discontinuous oscillator with three domains divided by circular boundaries. The stability and bifurcations of period-1 and period-2 motions are discussed. From analytical predictions, periodic motions are simulated numerically. Stiffness effects on the periodic motions are discussed. Such studies will help one understand parameter effects in discontinuous dynamical systems, which can be applied for system design and control.

Author(s):  
Siyu Guo ◽  
Albert C. J. Luo

Abstract In this paper, periodic motions in an autonomous system with a discontinuous vector field are discussed. The periodic motions are obtained by constructing a set of algebraic equations based on motion mapping structures. The stability of periodic motions is investigated through eigenvalue analysis. The grazing bifurcations are presented by varying the spring stiffness. Once the grazing bifurcation occurs, periodic motions switches from the old motion to a new one. Numerical simulations are conducted for motion illustrations. The parameter study helps one understand autonomous discontinuous dynamical systems.


Author(s):  
Yu Guo ◽  
Albert C. J. Luo

Abstract In this paper, the semi-analytical method of implicit discrete maps is employed to investigate the nonlinear dynamical behavior of a nonlinear spring pendulum. The implicit discrete maps are developed through the midpoint scheme of the corresponding differential equations of a nonlinear spring pendulum system. Using discrete mapping structures, different periodic motions are obtained for the bifurcation trees. With varying excitation amplitude, a bifurcation tree of period-1 motion to chaos is achieved through the bifurcation tree of period-1 to period-2 motions. The corresponding stability and bifurcations are studied through eigenvalue analysis. Finally, numerical illustrations of periodic motions are obtained numerically and analytically.


Author(s):  
Albert C. J. Luo ◽  
Siyu Guo

In this paper, the analytical solutions of periodic evolutions of the periodically diffused Brusselator are obtained through the generalized harmonic balanced method. Stable and unstable solutions of period-1 and period-2 evolutions in the Brusselator are presented. Stability and bifurcations of the periodic evolution are determined by the eigenvalue analysis, and the corresponding Hopf bifurcations are presented on the analytical bifurcation tree of the periodic motions. Numerical simulations of stable period-1 and period-2 motions of Brusselator are completed. The harmonic amplitude spectra show harmonic effects on periodic motions, and the corresponding accuracy of approximate analytical solutions can be prescribed specifically.


2013 ◽  
Vol 23 (03) ◽  
pp. 1330009 ◽  
Author(s):  
ALBERT C. J. LUO ◽  
MOZHDEH S. FARAJI MOSADMAN

In this paper, the analytical dynamics for singularity, switchability, and bifurcations of a 2-DOF friction-induced oscillator is investigated. The analytical conditions of the domain flow switchability at the boundaries and edges are developed from the theory of discontinuous dynamical systems, and the switchability conditions of boundary flows from domain and edge flows are presented. From the singularity and switchability of flow to the boundary, grazing, sliding and edge bifurcations are obtained. For a better understanding of the motion complexity of such a frictional oscillator, switching sets and mappings are introduced, and mapping structures for periodic motions are adopted. Using an eigenvalue analysis, the stability and bifurcation analysis of periodic motions in the friction-induced system is carried out. Analytical predictions and parameter maps of periodic motions are performed. Illustrations of periodic motions and the analytical conditions are completed. The analytical conditions and methodology can be applied to the multi-degrees-of-freedom frictional oscillators in the same fashion.


Author(s):  
Yeyin Xu ◽  
Albert C. J. Luo

Abstract In this paper, the semi-analytical solutions of period-1 and period-2 motions in a nonlinear Jeffcott rotor system are presented through the discrete mapping method. The periodic motions in the nonlinear Jeffcott rotor system are obtained through specific mapping structures with a certain accuracy. A bifurcation tree of period-1 to period-2 motion is achieved, and the corresponding stability and bifurcations of periodic motions are analyzed. For verification of semi-analytical solutions, numerical simulations are carried out by the mid-point scheme.


Author(s):  
Yeyin Xu ◽  
Albert C.J. Luo

Abstract In this paper, a bifurcation tree of period-1 to period-8 motions in a nonlinear Jeffcott rotor system is obtained through the discrete mapping method. The bifurcations and stability of periodic motions on the bifurcation tree are discussed. The quasi-periodic motions on the bifurcation tree are caused by two (2) Neimark bifurcations of period-1 motions, one (1) Neimark bifurcation of period-2 motions and four (4) Neimark bifurcations of period-4 motions. The specific quasi-periodic motions are mainly based on the skeleton of the corresponding periodic motions. One stable and one unstable period-doubling bifurcations exist for the period-1, period-2 and period-4 motions. The unstable period-doubling bifurcation is from an unstable period-m motion to an unstable period-2m motion, and the unstable period-m motion becomes stable. Such an unstable period-doubling bifurcation is the 3rd source pitchfork bifurcation. Periodic motions on the bifurcation tree are simulated numerically, and the corresponding harmonic amplitudes and phases are presented for harmonic effects on periodic motions in the nonlinear Jeffcott rotor system. Such a study gives a complete picture of periodic and quasi-periodic motions in the nonlinear Jeffcott rotor system in the specific parameter range. One can follow the similar procedure to work out the other bifurcation trees in the nonlinear Jeffcott rotor systems.


2020 ◽  
Vol 30 (05) ◽  
pp. 2050077 ◽  
Author(s):  
Yeyin Xu ◽  
Zhaobo Chen ◽  
Albert C. J. Luo

In this paper, a bifurcation tree of period-1 motion to chaos in a flexible nonlinear rotor system is presented through period-1 to period-8 motions. Stable and unstable periodic motions on the bifurcation tree in the flexible rotor system are achieved semi-analytically, and the corresponding stability and bifurcation of the periodic motions are analyzed by eigenvalue analysis. On the bifurcation tree, the appearance and vanishing of jumping phenomena of periodic motions are generated by saddle-node bifurcations, and quasi-periodic motions are induced by Neimark bifurcations. Period-doubling bifurcations of periodic motions are for developing cascaded bifurcation trees, however, the birth of new periodic motions are based on the saddle-node bifurcation. For a better understanding of periodic motions on the bifurcation tree, nonlinear harmonic amplitude characteristics of periodic motions are presented. Numerical simulations of periodic motions are performed for the verification of semi-analytical predictions. From such a study, nonlinear Jeffcott rotor possesses complex periodic motions. Such results can help one detect and control complex motions in rotor systems for industry.


2011 ◽  
Vol 301-303 ◽  
pp. 1724-1729
Author(s):  
Mei Sa Pang ◽  
Deng Hua Li ◽  
Jun Fang Fan ◽  
Xue Fei Li

The static stability of missile pitching movement is one of the important performances in guidance and control systems. In this paper, a method which consists of the single and double loop longitudinal autopilot using frequency domain approach is proposed to solve the problem efficiently. Single-loop autopilot is used to simplify the system design when the missile is highly static stable; the double-loop autopilot is employed to stabilize the system and improve frequency performance when the missile is static stable or static unstable. Control gain of the system is determined by aerodynamic parameters and frequency domain indexes. The simulation result shows that double-loop autopilot based on frequency domain simplified the system design and improved the stability and robustness of missile system.


Author(s):  
Albert C. J. Luo ◽  
Bo Yu

In this paper, analytical solutions of periodic motions in a periodically forced, damped, two-degree-of-freedom oscillator with a nonlinear hardening spring are obtained. The bifurcation trees of periodic motions are presented, and the stability and bifurcation of the periodic motion are determined through the eigenvalue analysis. Numerical simulations of stable period-1 and period-2 motions in the two-degree-of-freedom systems are presented, and the harmonic amplitude spectrums are presented to show the harmonic effects on periodic motions, and the accuracy of approximate analytical solutions can be estimated through the harmonic amplitudes.


Author(s):  
W. Grant Kirkland ◽  
S. C. Sinha

Many dynamical systems can be modeled by a set of linear/nonlinear ordinary differential equations with periodic time-varying coefficients. The state transition matrix Φ(t,α) associated with the linear part of the equation can be expressed in terms of the periodic Lyapunov-Floquét transformation matrix Q(t,α) and a time-invariant matrix R(α). Computation of Q(t,α) and R(α) in a symbolic form as a function of system parameters α is of paramount importance in stability, bifurcation analysis, and control system design. In the past, a methodology has been presented for computing Φ(t,α) in a symbolic form, however Q(t,α) and R(α) have never been calculated in a symbolic form. Since Q(t,α) and R(α) were available only in numerical forms, general results for parameter unfolding and control system design could not be obtained in the entire parameter space. In this work a technique for symbolic computation of Q(t,α), and R(α) matrices is presented. First, Φ(t,α) is computed symbolically using the shifted Chebyshev polynomials and Picard iteration method as suggested in the literature. Then R(α) is computed using the Gaussian quadrature integral formula. Finally Q(t,α) is computed using the matrix exponential summation method. Using Mathematica, this approach has successfully been applied to the well-known Mathieu equation and a four dimensional time-periodic system in order to demonstrate the applications of the proposed method to linear as well as nonlinear problems.


Sign in / Sign up

Export Citation Format

Share Document