Exploration of Support Structure Design for Additive Manufacturing at a Major OEM: a Case Study

2021 ◽  
Author(s):  
Lucas Morand ◽  
Joshua D. Summers ◽  
Garrett J. Pataky

Abstract The support structures required in many forms of additive manufacturing are often seen as waste that is tolerated as necessary. In metal additive processes, cost is frequently reduced by minimizing the amount of support structures needed to produce a part so that in turn, material use is decreased. However, there still exists the challenge of generating parts that are not deformed by the stresses created in the process. In this case study, support structures were leveraged to address deformation. A part was printed via direct metal laser melting with supports with a high grouping density in areas of high anticipated deformation in order to stiffen the part to prevent deformation. Then, they were printed again with a low grouping density to allow the part to relax and reduce stress. Combinations of support strategy and leaving supports on during post processing were used to investigate the effects of keeping or removing the supports in post-print operations such as surface treatment. The two optimized support strategies saw a lower deformation than the baseline approach to supports, and the releasing strategy was closest to the reference solid model with a 26% reduction in average deformation. The results suggest that the support structures in additively manufactured parts have a different impact on the part than the original intent of the supports to simply alleviate a process requirement. The support structures should be used to impact the final part geometry.

2020 ◽  
Vol 10 (11) ◽  
pp. 3779
Author(s):  
Xiaomin Chen ◽  
Di Wang ◽  
Jingming Mai ◽  
Xiaojun Chen ◽  
Wenhao Dou

The micro reacting pipe with 3D internal structure, which is a micromixer with the shape of the pipe, has shown great advantages regarding mass transfer and heat transfer. Since the fluid flow is mostly laminar at the micro-scale, which is unfavorable to the diffusion of reactants, it is important to understand the influence of the geometry of the microchannel on the fluid flow for improving the diffusion of the reactants and mixing efficiency. On the other hand, it is a convenient method to manufacture a micro reacting pipe in one piece through metal additive manufacturing without many post-processing processes. In this paper, a basis for the design of a micromixer model was provided by combining the metal additive manufacturing process constraints with computational fluid dynamics (CFD) simulation. The effects of microchannel structures on fluid flow and mixing efficiency were studied by CFD simulation whose results showed that the internal micro-structure had a significantly positive effect on the mixing efficiency. Based on the simulation results, the splitting-collision mechanism was discussed, and several design rules were obtained. Two different materials were selected for manufacturing with the laser powder bed fusion (L-PBF) technology. After applying pressure tests to evaluate the quality of the formed parts and comparing the corrosion-resistance of the two materials, one material was picked out for the industrial application. Additionally, the chemical experiment was conducted to evaluate the accuracy of the simulation. The experimental results showed that the mixing efficiency of the micro reacting pipe increased by 56.6%, and the optimal determining size of the micro reacting pipe was 0.2 mm. The study can be widely used in the design and manufacture of a micromixer, which can improve efficiency and reacting stability in this field.


Author(s):  
Bradley Hanks ◽  
Mary Frecker

Abstract Additive manufacturing is a developing technology that enhances design freedom at multiple length scales, from the macroscale, or bulk geometry, to the mesoscale, such as lattice structures, and even down to tailored microstructure. At the mesoscale, lattice structures are often used to replace solid sections of material and are typically patterned after generic topologies. The mechanical properties and performance of generic unit cell topologies are being explored by many researchers but there is a lack of development of custom lattice structures, optimized for their application, with considerations for design for additive manufacturing. This work proposes a ground structure topology optimization method for systematic unit cell optimization. Two case studies are presented to demonstrate the approach. Case Study 1 results in a range of unit cell designs that transition from maximum thermal conductivity to minimization of compliance. Case Study 2 shows the opportunity for constitutive matching of the bulk lattice properties to a target constitutive matrix. Future work will include validation of unit cell modeling, testing of optimized solutions, and further development of the approach through expansion to 3D and refinement of objective, penalty, and constraint functions.


2021 ◽  
Vol 18 (5) ◽  
pp. 1061-1079
Author(s):  
Paolo Cicconi ◽  
Marco Mandorli ◽  
Claudio Favi ◽  
Federico Campi ◽  
Michele Germani

2020 ◽  
Author(s):  
Paolo Cicconi ◽  
Marco Mandolini ◽  
Claudio Favi ◽  
Federico Campi ◽  
Michele Germani

2021 ◽  
Author(s):  
Wadea Ameen Qaid ◽  
Abdulrahman Al-Ahmari ◽  
Muneer Khan Mohammed ◽  
Husam Kaid

Abstract Electron-beam melting (EBM) is a rapidly developing metal additive manufacturing (AM) method. It is more effective with complex and customized parts manufactured in low volumes. In contrast to traditional manufacturing it offers reduced lead time and efficient material management. However, this technology has difficulties with regard to the construction of overhang structures. Production of overhangs using EBM without support structures results in distorted objects, and the addition of a support structure increases the material consumption and necessitates post-processing. The objective of this study was to design support structures for metal AM that are easy to remove and consume lower support material without affecting the quality of the part. The design of experiment methodology was incorporated to evaluate the support parameters. The multi-objective optimization minimizing support volume, support removal time along with constrained deformation was performed using multi objective genetic algorithm (MOGA-II). The optimal solution was characterized by a large tooth height (4 mm), large tooth base interval (4 mm), large fragmented separation width (2.5 mm), high beam current (6 mm), and low beam scan speed (1200 mm/s).


2015 ◽  
Vol 137 (11) ◽  
Author(s):  
John Schmelzle ◽  
Eric V. Kline ◽  
Corey J. Dickman ◽  
Edward W. Reutzel ◽  
Griffin Jones ◽  
...  

Additive manufacturing (AM) of metallic parts provides engineers with unprecedented design freedom. This enables designers to consolidate assemblies, lightweight designs, create intricate internal geometries for enhanced fluid flow or heat transfer performance, and fabricate complex components that previously could not be manufactured. While these design benefits may come “free” in many cases, it necessitates an understanding of the limitations and capabilities of the specific AM process used for production, the system-level design intent, and the postprocessing and inspection/qualification implications. Unfortunately, design for additive manufacturing (DfAM) guidelines for metal AM processes are nascent given the rapid advancements in metal AM technology recently. In this paper, we present a case study to provide insight into the challenges that engineers face when redesigning a multicomponent assembly into a single component fabricated using laser-based powder bed fusion for metal AM. In this case, part consolidation is used to reduce the weight by 60% and height by 53% of a multipart assembly while improving performance and minimizing leak points. Fabrication, postprocessing, and inspection issues are also discussed along with the implications on design. A generalized design approach for consolidating parts is presented to help designers realize the freedoms that metal AM provides, and numerous areas for investigation to improve DfAM are also highlighted and illustrated throughout the case study.


Sign in / Sign up

Export Citation Format

Share Document