Frequency Tunable Phononic Crystal Flat Lens for Subwavelength Imaging

2021 ◽  
Author(s):  
Hrishikesh Danawe ◽  
Serife Tol

Abstract In this paper, we present a thickness-contrast based flat lens for subwavelenth imaging in an aluminum plate. The lens is made of phononic crystal (PC) with a triangular lattice arrangement of through holes drilled over an aluminum plate. Subwave-length imaging is achieved by exploiting the concept of negative refraction of A0 plate mode for the optical dispersion branch of the PC. The wavenumbers are matched at a design frequency by creating a step change in the thickness of the PC-lens and host plate. The thickness-contrast results in refractive index of minus one at the interface of the lens and host plate. Negative refraction-based lens overcomes the diffraction limit and enables focusing of flexural waves in an area less than a square wavelength. We validate the flat lens design at a single design frequency through numerical simulations and experiments. Further, we numerically demonstrate the tunability of the lens design over a broadband frequency range by modifying the thickness-contrast between the lens and host plate. The proposed frequency tunable design is promising for many applications such as ultrasonic inspection, tetherless energy transfer, and energy harvesting, where the localization of wave energy in a small spot is desirable.

2004 ◽  
Vol 18 (25) ◽  
pp. 1275-1291 ◽  
Author(s):  
EKMEL OZBAY ◽  
KAAN GUVEN ◽  
ERTUGRUL CUBUKCU ◽  
KORAY AYDIN ◽  
B. KAMIL ALICI

In this article, we present an experimental and numerical study of novel optical properties of two-dimensional dielectric photonic crystals (PCs) which exhibit negative refraction. We investigate two mechanisms which utilize the band structure of the PC to generate a negative effective index of refraction (n eff <0) and demonstrate the negative refraction experimentally. To the isotropic extend of n eff , different PC slab structures are employed to focus the radiation of a point source. It is shown experimentally that the PC can generate an image of the source with subwavelength resolution in the vicinity of the PC interface. Using a different PC, one can also obtain a far field focusing. In the latter case, we explicitly show the flat lens behavior of the structure. These examples indicate that PC-based lenses can surpass limitations of conventional lenses and lead to novel optics applications.


2005 ◽  
Vol 95 (15) ◽  
Author(s):  
Zhaolin Lu ◽  
Janusz A. Murakowski ◽  
Christopher A. Schuetz ◽  
Shouyuan Shi ◽  
Garrett J. Schneider ◽  
...  

2017 ◽  
Vol 65 (11) ◽  
pp. 5720-5731 ◽  
Author(s):  
Eran Falek ◽  
Reuven Shavit
Keyword(s):  

Nature ◽  
2003 ◽  
Vol 426 (6965) ◽  
pp. 404-404 ◽  
Author(s):  
Patanjali V. Parimi ◽  
Wentao T. Lu ◽  
Plarenta Vodo ◽  
Srinivas Sridhar

2010 ◽  
Vol 97 (12) ◽  
pp. 121919 ◽  
Author(s):  
J. Pierre ◽  
O. Boyko ◽  
L. Belliard ◽  
J. O. Vasseur ◽  
B. Bonello

Sign in / Sign up

Export Citation Format

Share Document