Analysis of the Transmission Error of Face-Gear Drives

Author(s):  
S. D. Chung ◽  
S. H. Chang ◽  
S. S. Lu

Abstract Based on the face-gear generation process, the analytical geometry of face-gear drive with its mathematical model for tooth contact analysis of face-gear and spur pinion meshing was derived. In this paper, contact path and transmission error due to assembly misalignment were analyzed by using the proposed mathematical model and the tooth contact analysis. The effect of assembly error along the axis of face-gear, misalignment of crossed and angular displacement between axes of spur pinion and face-gear were all investigated. The results are illustrated by several examples.

2010 ◽  
Vol 132 (3) ◽  
Author(s):  
Wei-Shiang Wang ◽  
Zhang-Hua Fong

This paper proposes a new type of double-crowned helical gear that can be continuously cut on a modern Cartesian-type hypoid generator with two face-hobbing head cutters and circular-arc cutter blades. The gear tooth flank is double crowned with a cycloidal curve in the longitudinal direction and a circular arc in the profile direction. To gauge the sensitivity of the transmission errors and contact patterns resulting from various assembly errors, this paper applies a tooth contact analysis technique and presents several numerical examples that show the benefit of the proposed double-crowned helical gear set. In contrast to a conventional helical involute gear, the tooth bearing and transmission error of the proposed gear set are both controllable and insensitive to gear-set assembly error.


2010 ◽  
Vol 44-47 ◽  
pp. 1948-1951
Author(s):  
Ning Zhao ◽  
Hui Guo

The coordinate systems for cutting face gears and for meshing of face gear drive with involute cylindrical pinion. The tooth surface equation of face gear with machining errors is deviated, such as change of shaft angle, change of shortest distance between face gear and cutter tool axes, helix angle of cutter tool. Tooth contact analysis applied in the paper considered with the alignment error of the driving system. The tooth contact path and the transmission error of the face gear drive were simulated through the tooth contact analysis for different alignment errors and machining errors. The simulation results indicate that all of the alignment errors and machining error don’t cause transmission error except helix angle error of the cutting tool. The errors will bring the shift of the contact path on gear teeth. The shift of bearing contact can be reduced by combination of different errors of alignment or machining.


2010 ◽  
Vol 29-32 ◽  
pp. 1711-1716
Author(s):  
Shu Yan Zhang ◽  
Hui Guo

A double direction modification with a grinding worm is applied on tooth surface of face gear drive. The surface equations of the rack cutter, shaper and grinding worm are derived respectively. Loaded tooth contact analysis (LTCA) with finite element method (FEM) is performed to investigate the meshing performance of face gear drive before modification and after modification. The modification by a grinding worm can obviously reduce the sensitivity of face gear drive to misalignment; the bending stress and the contact stress are reduced with avoiding edge contact; the load transmission error is reduced. This method can obtain a more stable bearing contact in contrast to the method by increasing tooth number of shaper, and the modification magnitude can be controlled freely. The investigation is illustrated with numerical examples.


1997 ◽  
Vol 119 (1) ◽  
pp. 114-119 ◽  
Author(s):  
Y. Zhang ◽  
Z. Wu

This paper presents a detailed investigation on the manufacturing, tooth geometry and contact characteristics of face gear drives with offset axes. In the paper, the tooth geometry of offset face gears is analytically determined by simulating the conjugate motion between the gear and the cutting tool in the generation process. Design criteria are established for the optimal tooth element proportions of offset face gears that avoid tooth undercutting and pointing. The tooth surface geometry of the gear member of the drive is modified by using a shaper that resembles the pinion in profile but has a few more teeth than the pinion to localize the tooth contact. The contact characteristics of the offset face gears are analyzed by a tooth contact analysis (TCA) program that simulates the meshing process of the gear drive assembled under misalignment. An example of offset face gear design and contact analysis is included in the paper.


2000 ◽  
Vol 122 (1) ◽  
pp. 109-122 ◽  
Author(s):  
Claude Gosselin ◽  
Thierry Guertin ◽  
Didier Remond ◽  
Yves Jean

The Transmission Error and Bearing Pattern of a gear set are fundamental aspects of its meshing behavior. To assess the validity of gear simulation models, the Transmission Error and Bearing Pattern of a Formate Hypoid gear set are measured under a variety of operating positions and applied loads. Measurement data are compared to simulation results of Tooth Contact Analysis and Loaded Tooth Contact Analysis models, and show excellent agreement for the considered test gear set. [S1050-0472(00)00901-6]


Author(s):  
Y-C Chen ◽  
M-L Gu

This article investigated the contact behaviours of a modified curvilinear gear set for parallel-axis transmission, which exhibits a pre-designed parabolic transmission error (TE) and localized bearing contact. The proposed gear set is composed of a modified pinion with curvilinear teeth and an involute gear with curvilinear teeth. Tooth contact analysis enabled the authors to explore the influences of assembly errors and design parameters on TEs and contact ellipses of this gear set. It is observed that TEs were continuous and the contact ellipses were localized in the middle of the tooth flanks, even under assembly errors. Finite-element contact analysis was performed to study stress distributions under different design parameters. In addition, numerical examples are presented to demonstrate the contact characteristics of the modified curvilinear gear set.


2010 ◽  
Vol 43 ◽  
pp. 279-282
Author(s):  
Kai Xu ◽  
Xiao Zhong Deng ◽  
Jian Jun Yang ◽  
Guan Qiang Dong

Based on Tooth Contact Analysis (TCA), a feasible approach for Transmission Error (TE) of planetary gear train is proposed in this paper. With a view to getting the total TE curve of the planetary gear train, a specific analysis of the TE from the planetary gear train with only one planet should be proceed firstly, the second step is to calculate each phase difference of planets in the gear train. The applicable conditions for the simplified calculation are spur gear or involute gear pairs in the gear train. Due to equal space between them, planets have the same phase angle.


2013 ◽  
Vol 372 ◽  
pp. 543-546
Author(s):  
Xiao Fang Yang ◽  
Zong De Fang ◽  
Yong Zhen Zhang ◽  
Yuan Fei Han

According to the principle of tri-branching, a mechanism structural model was developed to analyze the helical gear transmission system. On the base of loaded tooth contact analysis (LTCA), the load transmission error of each gear stage is simulated at the any engagement position, and the fitting curves of the torsion mesh stiffness are obtained, which can improve the numerical precision. The research results can be applied to analyze the actual application of tri-branching transmission system and provide a firm foundation for study the power-split and load-sharing characteristics.


Sign in / Sign up

Export Citation Format

Share Document