A New Method of Dimensional Synthesis of Function Generator for Planar 4-BAR Linkage Based on Wavelet Characteristic Parameters

Author(s):  
Wu Xin ◽  
Chu Jinkui ◽  
Cao Weiqing

Abstract The wavelet description of output function of planar 4-bar linkage is presented in the light of wavelet transform theory. By the aid of Daubechies orthogonal wavelet to transform and analyze the linkage’s output function, a new conception of Wavelet Characteristic Parameters (in short WCP) about output function is originated. Based on this conception, a resolution to function synthesis of planar linkage is provided according to WCP with fuzzy identification method employed. It helps to synthesize function generator that will approximately realize “infinite points” of the output function specially for output requirement with given range. Two examples will illustrate the efficiency and advantages of this method.

IJARCCE ◽  
2015 ◽  
Vol 4 (8) ◽  
pp. 408-413
Author(s):  
Shailesh M L ◽  
Dr. Anand Jatti ◽  
Madhushree K S ◽  
Siddesh M B

Author(s):  
Zoubida Bououchma ◽  
Jalal Sabor

<span>Supercapacitors are electrical energy storage devices with a high specific power density, a long cycle life and a good efficiency, which make them attractive alternative storage devices for various applications. However, supercapacitors are subject to a progressive degradation of their perfor-mance because of aging phenomenon. Therefore, it is very important to be able to estimate their State-of-Health during operation. Electrochemical Impedance Spectroscopy (EIS) is a very recog-nized technique to determine supercapacitors’ state-of-health. However, it requires the interrup-tion of system operation and thus cannot be performed in real time (online). In this paper, a new online identification method is proposed based on extended Kalman observer combined with a complementary PID corrector. The proposed method allows to accurately estimating supercapacitor resistance and capacitance, which are the main indicators of supercapacitor state-of-health. The new online identification method was applied for two voltage/current profiles using two different supercapacitors. The resistance/capacitance estimated by the new method and the conventional EKF were compared with those obtained by an experimental offline method. In comparison with conventional EKF, the capacitance obtained by the new method is significantly more accurate.</span>


Automatika ◽  
2016 ◽  
Vol 57 (2) ◽  
Author(s):  
Javad Modarresi ◽  
Eskandar Gholipour

Author(s):  
Da Jun Chen ◽  
Wei Ji Wang

Abstract As a multi-resolution signal decomposition and analysis technique, the wavelet transforms have been already introduced to vibration signal processing. In this paper, a comparison on the time-scale map analysis is made between the discrete and the continuous wavelet transform. The orthogonal wavelet transform decomposes the vibration signal onto a series of orthogonal wavelet functions and the number of wavelets on one wavelet level is different from those on the other levels. Since the grids are unevenly distributed on the time-scale map, it is shown that a representation pattern of a vibration component on the map may be significantly altered or even be broken down into pieces when the signal has a shift along the time axis. On contrary, there is no such uneven distribution of grids on the continuous wavelet time-scale map, so that the representation pattern of a vibration signal component will not change its shape when the signal component shifts along the time axis. Therefore, the patterns in the continuous wavelet time-scale map are more easily recognised by human visual inspection or computerised automatic diagnosis systems. Using a Gaussian enveloped oscillation wavelet, the wavelet transform is capable of retaining the frequency meaning used in the spectral analysis, while making the interpretation of patterns on the time-scale maps easier.


Sign in / Sign up

Export Citation Format

Share Document