Nonlinear Modeling and Control of Hysteresis in Active Material Systems
Abstract Active material actuators present a significant challenge to researchers interested in applying them to aerospace structures. Materials such as shape memory alloys, piezo-ceramcs and electrorheological fluids exhibit hysteresis to varying degrees. Not only do they exhibit hysteresis, but in some cases the hysteresis is non-stationary. We present a methodology that allows for design of controllers for the structural system from linear system theory. This is accomplished by compensating, or linearizing, the hysteresis nonlinearity using an adaptive model of hysteresis. Experimental results for adaptive control of shape memory alloy actuators with non-stationary hysteresis are provided.