Vehicle Motion Stability With Two Vehicle Dynamics Models

Author(s):  
Jingliang Li ◽  
Jingang Yi

We present and compare vehicle maneuver stability under two vehicle dynamics models, one with the rear tire slip angle dynamics and the other with the vehicle side slip angle dynamics. Instead of using vehicle mass center side slip angle, we consider to use rear axial slip angle as one of the state variables for studying vehicle lateral dynamics. Using rear wheel slip angle as a state variable for studying vehicle dynamics has been reported in practices in industry but not rigorously studied. We analyze the new vehicle dynamics and compare the stability results with existing reported results. Both analytical and numerical results have shown that the stability region of the vehicle dynamics by using the rear slip angle is less conservative comparing with using the vehicle side slip angle.

Author(s):  
Jeonghoon Song ◽  
Heungseob Kim ◽  
Kwangsuck Boo

This paper presents a mathematical vehicle model that is designed to analyse and improve the dynamic performance of a vehicle. A wheel slip controller for anti-lock braking system (ABS) brakes is formulated using a sliding mode controller and a proportional-integral-derivative (PID) controller for rear wheel steering is also designed to enhance the stability, steerability, and driveability of the vehicle during transient manoeuvres. The braking and steering performances of controllers are evaluated for various driving conditions, such as straight and J-turn manoeuvres. The simulation results show that the proposed full car model is sufficient to predict vehicle responses accurately. The developed ABS reduces the stopping distance and increases the longitudinal and lateral stability of both two-and four-wheel steering vehicles. The results also demonstrate that the use of a rear wheel controller as a yaw motion controller can increase its lateral stability and reduce the slip angle at high speeds.


2013 ◽  
Vol 416-417 ◽  
pp. 909-913
Author(s):  
Qi Jia Liu ◽  
Si Zhong Chen

The aim of this article is to improve the brake stability of active rear wheel steering vehicle. The optimal theory of linear quadratic regulator is used to construct a controller, and the aim of the controller is to maintain the side slip angle is zero, and the control parameter is set according to the change of velocity when braking. An antilock brake model based on the door limit of wheel slip rate is constructed. The analysis is carried on a front wheel steering vehicle, which has two kinds of unti-lock mode. Meanwhile, an active rear wheel steering vehicle with two kinds of unti-lock mode is performed, also. All tests are performed on the bisectional road. The results of analysis show that the active rear wheel steering vehicle using the anti-lock mode of four wheels independent control can give the shortest braking distance, the smaller side slip angle and the smaller deviation from the lane. So it can give more contribution to the braking safety.


Author(s):  
Martin Haudum ◽  
Johannes Edelmann ◽  
Manfred Plöchl ◽  
Manuel Höll

The effective application of integrated vehicle dynamics control and automatic driving require consistent vehicle state variables and parameters. Considering lateral vehicle dynamics, the yaw rate and (estimated) vehicle side-slip angle are the minimum set of state variables that can give insight into the handling characteristics of a vehicle. Various methods of vehicle side-slip angle (lateral velocity) estimation have been tested in virtual and real world applications, in particular on a horizontal dry road. Vehicle side-slip angle, however, is not only affected by the (steering) commands of the driver, and possibly by a vehicle dynamics controller, but can also arise from a banked road or result from a low-friction surface, changing tyre–road contact. The combined effects require a comprehensive estimation approach, which is less often touched upon in the literature. Based on earlier findings on important aspects of observability, the paper addresses a modular vehicle side-slip angle estimation approach that is particularly focused upon practical aspects of modelling and design. Estimation of the combined vehicle side-slip angle, road bank angle and maximum tyre–road friction coefficient has been broadly tested with a vehicle equipped with an electronic stability control (ESC) and electric power-assisted steering (EPS) sensor configuration, for various road conditions, driving situations and vehicle/tyre setups.


2016 ◽  
Author(s):  
Herman M. Kaharmen ◽  
Djoko Kustono ◽  
Waras Kamdi ◽  
Tuwoso ◽  
Poppy Puspitasari

Author(s):  
Jun Liu ◽  
Jian Song ◽  
Hanjie Li ◽  
He Huang

In view of the problems related to vehicle-handling stability and the real-time correction of the heading direction, nonlinear analysis of a vehicle steering system was carried out based on phase plane theory. Subsequently, direct yaw-moment control (DYC) of the vehicle was performed. A four-wheel, seven-degree-of-freedom nonlinear dynamic model that included the nonlinear characteristics of the tire was established. The stable and unstable regions of the vehicle phase plane were divided, and the stable boundary model was established by analyzing the side slip angle–yaw rate ([Formula: see text]) and side slip angle–side slip angle rate [Formula: see text] phase planes as functions of the vehicle state variables. In the unstable region of the phase plane, taking the instability degree as the control target, a fuzzy neural network control strategy was utilized to determine the additional yawing moment of the vehicle required for stability restoration, which pulled the vehicle back from an unstable state to the stable region. In the stable region of the phase plane, a fuzzy control strategy was utilized to determine the additional yawing moment so that the actual state variables followed the ideal state variables. In this way, the vehicle responded rapidly and accurately to the steering motion of the driver. A simulation platform was established in MATLAB/Simulink and three working condition was tested, that is, step, sine with dwell, and sine amplification signals. The results showed that the vehicle handling stability and the instantaneous heading-direction adjustment ability were both improved due to the control strategy.


2008 ◽  
Author(s):  
Guo Hongyan ◽  
Chen Hong ◽  
Ding Haitao ◽  
Bi Chunguang ◽  
Zhao Haiyan

Author(s):  
Fatima Ezzahra Saber ◽  
Mohamed Ouahi ◽  
Abdelmjid Saka

This paper introduces a method to estimate the lateral dynamics parameters,which are valuable to the development of more complex and powerful driver assistance system. In the assumption of measured lateral forces, three state observer methods are designed to simultaneously estimate the steering angleas unknown input and vehicle lateral state variables. The stability conditionsof such observers are derived in terms of Linear Matrix Inequalities (LMI). Simulation results through Matlab/Simulink software based on data of the CALLAS vehicle simulator is used to evaluate the performance of observersbased on Unknown Input Observer (OEI).


1990 ◽  
Vol 112 (1) ◽  
pp. 88-93 ◽  
Author(s):  
J. C. Whitehead

The lateral dynamics of rear wheel steering vehicles are examined using low order linear mathematical models. The response to rear steer angle inputs differs significantly from the front wheel steering response at low speeds. However, both the transient and steady state responses become less dependent on which wheels are steered as vehicle speed increases. This fact indicates that the unusual fixed control response does not alone cause rear wheel steering vehicles to be unsafe at high speeds. The free control instability unique to rear wheel steering vehicles is analyzed using a torque input model which treats steer angle as a degree of freedom. The cause of this unstable weave mode and the stable front wheel steering weave mode is a ratio of tire slip angle to steer angle in excess of unity during high speed cornering.


Sign in / Sign up

Export Citation Format

Share Document