Pure Time Delay Analysis for Decentralized Networked Control Systems

Author(s):  
Ahmad F. Taha ◽  
Ahmed Elmahdi ◽  
Jitesh H. Panchal ◽  
Dengfeng Sun

The network disturbance effect can be considered as either a perturbation or as a pure time delay for the exchanged signals. The network-induced time delay is one of the main challenges when a network is inserted in the feedback loops of a control system. In this paper, our objective is to improve the behavior of a Networked Control System (NCS) by analyzing the time-delay given that the decentralized control design method is adopted. First, we review an observer-based control method for decentralized control systems. Second, we establish a map between the decentralized non-networked system, and the typical NCS state-space representation. The main idea the mapping is to put the Decentralized Networked Control System (DNCS) in a general form and then map the resulting system to the typical NCS form. Third, we derive the global dynamics of the DNCS. Fourth, an upper bound for the time-delay is derived that guarantees the stability of LTI DNCSs. Finally, we present a numerical example that illustrates the applicability of the derived bound.

2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Zhongda Lu ◽  
Lijing Wang ◽  
Fengbin Zhang ◽  
Fengxia Xu

This paper considers the stability andH∞control problem of networked control systems with time delay. Taking into account the influence of network with delay, unknown input disturbance, and uncertainties of the system modeling, meanwhile we establish a precise, closed-loop model for networked control systems with time delay. By selecting a proper Lyapunov-Krasovskii function and using Lyapunov theorem, a sufficient condition for stability of the system in the form of LMI is demonstrated, corresponding controller parameters are acquired, and the convergence of the control algorithm is proved. The simulation example shows that the construction of the network robust control system with time delay indeed improves the stability performance of the system, which indicates the effectiveness of the design.


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Ashraf F. Khalil ◽  
Jihong Wang

Networked control system is a research area where the theory is behind practice. Closing the feedback loop through shared network induces time delay and some of the data could be lost. So the network induced time delay and data loss are inevitable in networked control Systems. The time delay may degrade the performance of control systems or even worse lead to system instability. Once the structure of a networked control system is confirmed, it is essential to identify the maximum time delay allowed for maintaining the system stability which, in turn, is also associated with the process of controller design. Some studies reported methods for estimating the maximum time delay allowed for maintaining system stability; however, most of the reported methods are normally overcomplicated for practical applications. A method based on the finite difference approximation is proposed in this paper for estimating the maximum time delay tolerance, which has a simple structure and is easy to apply.


2001 ◽  
Author(s):  
Octavian Beldiman ◽  
Linda G. Bushnell ◽  
Gregory C. Walsh ◽  
Hua O. Wang ◽  
Yiguang Hong

Abstract In this paper we study the effect of external perturbations on a networked control system. We start by assuming that the non-networked system without perturbation is exponentially stable. Then, for fast enough networks we show that if the perturbation is bounded the networked system is ultimately bounded and if the perturbation is vanishing then the networked system is asymptotically stable. We conclude the paper with simulations verifying the results.


Processes ◽  
2020 ◽  
Vol 8 (8) ◽  
pp. 895
Author(s):  
Mingming Song ◽  
Hongmin Liu ◽  
Yanghuan Xu ◽  
Dongcheng Wang ◽  
Yangyang Huang

Flatness control system is characterized by multi-parameters, strong coupling, pure time delay, which complicate the establishment of an accurate mathematical model. Therefore, a control scheme that combines dynamic decoupling, PI (Proportion and Integral) control and adaptive Smith predictive compensation is proposed. To this end, a dynamic matrix is used to decouple the control system. A multivariable coupled pure time-delay system is transformed into several independent generalized single-loop pure time-delay systems. Then, a PI-adaptive Smith predictive controller is constructed for the decoupled generalized single-loop pure time-delay system. Simulations show that the scheme has a simple and feasible structure, and good control performance. When the mathematical model of the control system is inaccurate, the control performance of adaptive Smith control method is evidently better than that of the ordinary Smith control method. The model is successfully applied to the cold rolling production site through LabVIEW, and the control accuracy is within 5I. This study reveals a new solution to the problem of coupled pure time-delay in flatness control system.


2012 ◽  
Vol 426 ◽  
pp. 368-371
Author(s):  
Sheng Li Song ◽  
Y. Chen ◽  
S.J. Huang ◽  
L.H Yang ◽  
R. He

In the nonlinear networked control system (NCS), the conventional control method is difficult to achieve good control performance, due to the nonlinear problem associated with the disturbance factors, such as network induced time delay and data packet dropout. Considering this situation, this paper is aimed to propose a nonlinear networked control system based on T-S fuzzy model, which does not rely on specific network parameters or mathematical model. The nonlinear problem and the uncertainties of network can be both processed by the designed fuzzy controller. Then this approach is applied to nonlinear motor servo system, simulation of the example model is implemented in Matlab/Simulink associated with True Time toolbox. The results show that the proposed method not only is convenient for modeling, but also upgrade the performance of control system.


Sign in / Sign up

Export Citation Format

Share Document