Analysis of Effects of Fuel Cell System Dynamics on Optimal Energy Management

Author(s):  
Kai Wu ◽  
Ming Kuang ◽  
Milos Milacic ◽  
Xiaowu Zhang ◽  
Jing Sun

Dynamic characteristics of a proton exchange membrane fuel cell (PEMFC) system can impact fuel economy and load following performance of a fuel cell vehicle, especially if those dynamics are ignored in designing top-level energy management strategy. To quantify the effects of fuel cell system (FCS) dynamics on optimal energy management, dynamic programming (DP) is adopted in this study to derive optimal power split strategies at two levels: Level 1, where the FCS dynamics are ignored, and Level 2, where the FCS dynamics are incorporated. Analysis is performed to quantify the differences of these two resulting strategies to understand the effects of FCS dynamics. While Level 1 DP provides significant computational advantages, the resulting strategy leads to load following errors that need to be mitigated using battery or FCS itself. Our analysis shows that up to 5% fuel economy penalty on New York city cycle (NYCC) and 3% on supplemental federal test procedure (US06) can be resulted by ignoring FCS dynamics, when the dominant dynamics of the FCS has settling time as slow as 8 seconds.

Author(s):  
Pengfei Zou ◽  
Fazhan Tao ◽  
Zhumu Fu ◽  
Pengju Si ◽  
Chao Ma

In this paper, the hybrid electric vehicle is equipped with fuel cell/battery/supercapacitor as the research object, the optimal energy management strategy (EMS) is proposed by combining wavelet transform (WT) method and equivalent consumption minimization strategy (ECMS) for reducing hydrogen consumption and prolonging the lifespan of power sources. Firstly, the WT method is employed to separate power demand of vehicles into high-frequency part supplied by supercapacitor and low-frequency part allocated to fuel cell and battery, which can effectively reduce the fluctuation of fuel cell and battery to prolong their lifespan. Then, considering the low-frequency power, the optimal SOC of battery is used to design the equivalent factor of the ECMS method to improve the fuel economy. The proposed hierarchical EMS can realize a trade-off between the lifespan of power sources and fuel economy of vehicles. Finally, the effectiveness of the proposed EMS is verified by ADVISOR, and comparison results are given compared with the traditional ECMS method and ECMS combining the filter.


Author(s):  
Han Zhang ◽  
Jibin Yang ◽  
Jiye Zhang ◽  
Pengyun Song ◽  
Ming Li

Achieving an optimal operating cost is a challenge for the development of hybrid tramways. In the past few years, in addition to fuel costs, the lifespan of the power source is being increasingly considered as an important factor that influences the operating cost of a tramway. In this work, an optimal energy management strategy based on a multi-mode strategy and optimisation algorithm is described for a high-power fuel cell hybrid tramway. The objective of optimisation is to decrease the operating costs under the conditions of guaranteeing tramway performance. Besides the fuel costs, the replacement cost and initial investment of all power units are also considered in the cost model, which is expressed in economic terms. Using two optimisation algorithms, a multi-population genetic algorithm and an artificial fish swarm algorithm, the hybrid system's power targets for the energy management strategy were acquired using the multi-objective optimisation. The selected case study includes a low-floor light rail vehicle, and experimental validations were performed using a hardware-in-the-loop workbench. The results testify that an optimised energy management strategy can fulfil the operational requirements, reduce the daily operation costs and improve the efficiency of the fuel cell system for a hybrid tramway.


2002 ◽  
Vol 124 (3) ◽  
pp. 191-196 ◽  
Author(s):  
Daisie D. Boettner ◽  
Gino Paganelli ◽  
Yann G. Guezennec ◽  
Giorgio Rizzoni ◽  
Michael J. Moran

This paper incorporates a methanol reformer model with a proton exchange membrane (PEM) fuel cell system model for automotive applications. The reformer model and fuel cell system model have been integrated into a vehicle performance simulator that determines fuel economy and other performance features. Fuel cell vehicle fuel economy using on-board methanol reforming is compared with fuel economy using direct-hydrogen fueling. The overall performance using reforming is significantly less than in a direct-hydrogen fuel cell vehicle.


2011 ◽  
Vol 131 (12) ◽  
pp. 927-935
Author(s):  
Yusuke Doi ◽  
Deaheum Park ◽  
Masayoshi Ishida ◽  
Akitoshi Fujisawa ◽  
Shinichi Miura

Author(s):  
Michael W. Ellis ◽  
Mark W. Davis ◽  
A. Hunter Fanney ◽  
Brian P. Dougherty ◽  
Ian Doebber

Fuel cell systems for residential applications are an emerging technology for which specific consumer-oriented performance standards are not well defined. This paper presents a proposed experimental procedure and rating methodology for evaluating residential fuel cell systems. In the proposed procedure, residential applications are classified as grid independent load following; grid connected constant power; grid connected thermal load following; and grid connected water heating. An experimental apparatus and procedures for steady state and simulated use tests are described for each type of system. A rating methodology is presented that uses data from these experiments in conjunction with standard residential load profiles to quantify the net effect of a fuel cell system on residential utility use. The experiments and rating procedure are illustrated using data obtained from a currently available grid connected thermally load following system.


Author(s):  
Mark W. Davis ◽  
Michael W. Ellis ◽  
Brian P. Dougherty ◽  
A. Hunter Fanney

The National Institute of Standards and Technology (NIST), in conjunction with Virginia Tech, has developed a rating methodology for residential-scale stationary fuel cell systems. The methodology predicts the cumulative electrical production, thermal energy delivery, and fuel consumption on an annual basis. The annual performance is estimated by representing the entire year of climate and load data into representative winter, spring/fall, and summer days for six different U.S. climatic zones. It prescribes a minimal number of steady state and simulated use tests, which provide the necessary performance data for the calculation procedure that predicts the annual performance. The procedure accounts for the changes in performance resulting from changes in ambient temperature, electrical load, and, if the unit provides thermal as well as electrical power, thermal load. The rating methodology addresses four different types of fuel cell systems: grid-independent electrical load following, grid-connected constant power, grid-connected thermal load following, and grid-connected water heating. This paper will describe a partial validation of the rating methodology for a grid-connected thermal load following fuel cell system. The rating methodology was validated using measured data from tests that subjected the fuel cell system to domestic hot water and space heating thermal loads for each of the three representative days. The simplification of a full year’s load and climate data into three representative days was then validated by comparing the rating methodology predictions with the prediction of each hour over the full year in each of the six cities.


Sign in / Sign up

Export Citation Format

Share Document