On Steady-State Solutions of a Wave Equation by Solving a Delay Differential Equation With an Incremental Harmonic Balance Method

Author(s):  
Xuefeng Wang ◽  
Mao Liu ◽  
Weidong Zhu

For wave propagation in periodic media with strong nonlinearity, steady-state solutions can be obtained by solving a corresponding nonlinear delay differential equation (DDE). Based on the periodicity, the steady-state response of a repeated particle or segment in the media contains the complete information of solutions for the wave equation. Considering the motion of the selected particle or segment as a variable, motions of its adjacent particles or segments can be described by the same variable function with different phases, which are delayed variables. Thus, the governing equation for wave propagation can be converted to a nonlinear DDE with multiple delays. A modified incremental harmonic balance (IHB) method is presented here to solve the nonlinear DDE by introducing a delay matrix operator, where a direct approach is used to efficiently and automatically construct the Jacobian matrix for the nonlinear residual in the IHB method. This method is presented by solving an example of a one-dimensional monatomic chain under a nonlinear Hertzian contact law. Results are well matched with those in previous work, while calculation time and derivation effort are significantly reduced. Also there is no additional derivation required to solve new wave systems with different governing equations.

Author(s):  
A. Yusnaeni ◽  
Kasbawati Kasbawati ◽  
Toaha Syamsuddin

AbstractIn this paper, we study a mathematical model of an immune response system consisting of a number of immune cells that work together to protect the human body from invading tumor cells. The delay differential equation is used to model the immune system caused by a natural delay in the activation process of immune cells. Analytical studies are focused on finding conditions in which the system undergoes changes in stability near a tumor-free steady-state solution. We found that the existence of a tumor-free steady-state solution was warranted when the number of activated effector cells was sufficiently high. By considering the lag of stimulation of helper cell production as the bifurcation parameter, a critical lag is obtained that determines the threshold of the stability change of the tumor-free steady state. It is also leading the system undergoes a Hopf bifurcation to periodic solutions at the tumor-free steady-state solution.Keywords: tumor–immune system; delay differential equation; transcendental function; Hopf bifurcation. AbstrakDalam makalah ini, dikaji model matematika dari sistem respon imun yang terdiri dari sejumlah sel imun yang bekerja sama untuk melindungi tubuh manusia dari invasi sel tumor. Persamaan diferensial tunda digunakan untuk memodelkan sistem kekebalan yang disebabkan oleh keterlambatan alami dalam proses aktivasi sel-sel imun. Studi analitik difokuskan untuk menemukan kondisi di mana sistem mengalami perubahan stabilitas di sekitar solusi kesetimbangan bebas tumor. Diperoleh bahwa solusi kesetimbangan bebas tumor dijamin ada ketika jumlah sel efektor yang diaktifkan cukup tinggi. Dengan mempertimbangkan tundaan stimulasi produksi sel helper sebagai parameter bifurkasi, didapatkan lag kritis yang menentukan ambang batas perubahan stabilitas dari solusi kesetimbangan bebas tumor. Parameter tersebut juga mengakibatkan sistem mengalami percabangan Hopf untuk solusi periodik pada solusi kesetimbangan bebas tumor.Kata kunci: sistem tumor–imun; persamaan differensial tundaan; fungsi transedental; bifurkasi Hopf.


Axioms ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 105
Author(s):  
Lokesh Singh ◽  
Dhirendra Bahuguna

In this article, we construct a C1 stable invariant manifold for the delay differential equation x′=Ax(t)+Lxt+f(t,xt) assuming the ρ-nonuniform exponential dichotomy for the corresponding solution operator. We also assume that the C1 perturbation, f(t,xt), and its derivative are sufficiently small and satisfy smoothness conditions. To obtain the invariant manifold, we follow the method developed by Lyapunov and Perron. We also show the dependence of invariant manifold on the perturbation f(t,xt).


Author(s):  
K. C. Panda ◽  
R. N. Rath ◽  
S. K. Rath

In this paper, we obtain sufficient conditions for oscillation and nonoscillation of the solutions of the neutral delay differential equation yt−∑j=1kpjtyrjt′+qtGygt−utHyht=ft, where pj and rj for each j and q,u,G,H,g,h, and f are all continuous functions and q≥0,u≥0,ht<t,gt<t, and rjt<t for each j. Further, each rjt, gt, and ht⟶∞ as t⟶∞. This paper improves and generalizes some known results.


Sign in / Sign up

Export Citation Format

Share Document