Comparison of Control Strategies Applied to Nonlinear Quarterly Car Passive Suspension System

2015 ◽  
Vol 8 (3) ◽  
pp. 203
Author(s):  
Muhammad Sani Gaya ◽  
Amir Bature ◽  
Lukman A. Yusuf ◽  
I. S. Madugu ◽  
Ukashatu Abubakar ◽  
...  
Author(s):  
Xiaotian Xu ◽  
Yousef Sardahi ◽  
Chenyu Zheng

This paper presents a many-objective optimal design of a four-degree-of-freedom passive suspension system with an inerter device. In the optimization process, four objectives are considered: passenger’s head acceleration (HA), crest factor (CF), suspension deflection (SD), and tire deflection (TD). The former two objectives are important for the health and comfort of the driver and the latter two quantify the suspension system performance. The spring ks and damping cs constants between the sprung mass and unsprung mass, the inertance coefficient B, and the tire spring constant ky are considered as design parameters. The non-dominated sorting genetic algorithm (NSGA-II) is used to solve this optimization problem. The results show that there are many optimal trade-offs among the design objectives that could be applicable to suspension design in the industry.


2015 ◽  
Vol 1115 ◽  
pp. 440-445 ◽  
Author(s):  
Musa Mohammed Bello ◽  
Amir Akramin Shafie ◽  
Raisuddin Khan

The main purpose of vehicle suspension system is to isolate the vehicle main body from any road geometrical irregularity in order to improve the passengers ride comfort and to maintain good handling stability. The present work aim at designing a control system for an active suspension system to be applied in today’s automotive industries. The design implementation involves construction of a state space model for quarter car with two degree of freedom and a development of full state-feedback controller. The performance of the active suspension system was assessed by comparing it response with that of the passive suspension system. Simulation using Matlab/Simulink environment shows that, even at resonant frequency the active suspension system produces a good dynamic response and a better ride comfort when compared to the passive suspension system.


2008 ◽  
Vol 2 (2) ◽  
pp. 518-527 ◽  
Author(s):  
Hung Chi NGUYEN ◽  
Akira SONE ◽  
Daisuke IBA ◽  
Arata MASUDA

Author(s):  
Olugbenga M. Anubi ◽  
Carl D. Crane

A new variable stiffness suspension system based on a recent variable stiffness mechanism is proposed. The overall system is composed of the traditional passive suspension system augmented with a variable stiffness mechanism. The main idea is to improve suspension performance by varying stiffness in response to road disturbance. The system is analyzed using a quarter car model. The passive case shows much better performance in ride comfort over the tradition counterpart. Analysis of the invariant equation shows that the car body acceleration transfer function magnitude can be reduced at both the tire-hop and rattle space frequencies using the lever displacement transfer function thereby resulting in a better performance over the traditional passive suspension system. An H∞ controller is designed to correct for the performance degradation in the rattle space thereby providing the best trade-off between the ride comfort, suspension deflection and road holding.


Sensors ◽  
2017 ◽  
Vol 17 (5) ◽  
pp. 1122 ◽  
Author(s):  
Javier Moreno ◽  
Eduard Clotet ◽  
Marcel Tresanchez ◽  
Dani Martínez ◽  
Jordi Casanovas ◽  
...  

Author(s):  
Sunil Kumar Sharma ◽  
Anil Kumar

In a railway vehicle, vibrations are generated due to the interaction between wheel and track. To evaluate the effect of vibrations on the ride quality and comfort of a passenger vehicle, the Sperling's ride index method is frequently adopted. This paper focuses on the feasibility of improving the ride quality and comfort of railway vehicles using semiactive secondary suspension based on magnetorheological fluid dampers. Equations of vertical, pitch and roll motions of car body and bogies are developed for an existing rail vehicle. Moreover, nonlinear stiffness and damping functions of passive suspension system are extracted from experimental data. In view of improvement in the ride quality and comfort of the rail vehicle, a magnetorheological damper is integrated in the secondary vertical suspension system. Parameters of the magnetorheological damper depend on current, amplitude and frequency of excitations. Three semi-active suspension strategies with magnetorheological damper are analysed at different running speeds and for periodic track irregularity. The performance indices calculated at different semi-active strategies are juxtaposed with the nonlinear passive suspension system. Simulation results establish that magnetorheological damper strategies in the secondary suspension system of railway vehicles reduce the vertical vibrations to a great extent compared to the existing passive system. Moreover, they lead to improved ride quality and passenger comfort.


Sign in / Sign up

Export Citation Format

Share Document