Error Dynamics Design via a Repetitive Loop for UDE-Based Robust Control to Reject Periodic Disturbances

Author(s):  
Yeqin Wang ◽  
Yiting Dong ◽  
Jiguo Dai ◽  
Beibei Ren ◽  
Qing-Chang Zhong

Abstract The uncertainty and disturbance estimator (UDE)-based robust control has a two-degree-of-freedom nature through the design of the error dynamics and the design of the UDE filters. In the conventional design to handle periodic disturbances or mixed sinusoidal disturbances, high-order UDE filters incorporated with the internal model principle (IMP) or time-delay filters (TDF) are adopted to achieve the asymptotic reference tracking and the asymptotic disturbance rejection. In this paper, a new error dynamics design combined with a repetitive loop is proposed for the UDE-based robust control to achieve the asymptotic rejection of both step disturbances and periodic disturbances. The disturbance rejection performance is investigated through the two-degree-of-freedom nature, and the practical implementation of the proposed design is illustrated to eliminate the infinite bandwidth of the repetitive loop. The proposed design is validated through the simulation studies of a battery charging system with comparison to different reported designs of the conventional UDE-based robust control.

2011 ◽  
Vol 11 (1) ◽  
pp. 16 ◽  
Author(s):  
Pisit Sukkarnkha ◽  
Chanin Panjapornpon

In this work, a new control method for uncertain processes is developed based on two-degree-of-freedom control structure. The setpoint tracking controller designed by input/output linearization technique is used to regulate the disturbance-free output and the disturbance rejection controller designed is designed by high-gain technique. The advantage of two-degree-of-freedom control structure is that setpoint tracking and load disturbance rejection controllers can be designed separately. Open-loop observer is applied to provide disturbance-free response for setpoint tracking controller. The process/disturbance-free model mismatches are fed to the disturbance rejection controller for reducing effect of disturbance. To evaluate the control performance, the proposed control method is applied through the example of a continuous stirred tank reactor with unmeasured input disturbances and random noise kinetic parametric uncertainties. The simulation results show that both types of disturbances can be effectively compensated by the proposed control method.


Author(s):  
Meiying Zhang ◽  
Thierry Laliberté ◽  
Clément Gosselin

This paper proposes the use of passive force and torque limiting devices to bound the maximum forces that can be applied at the end-effector or along the links of a robot, thereby ensuring the safety of human-robot interaction. Planar isotropic force limiting modules are proposed and used to analyze the force capabilities of a two-degree-of-freedom planar serial robot. The force capabilities at the end-effector are first analyzed. It is shown that, using isotropic force limiting modules, the performance to safety index remains excellent for all configurations of the robot. The maximum contact forces along the links of the robot are then analyzed. Force and torque limiters are distributed along the structure of the robot in order to ensure that the forces applied at any point of contact along the links are bounded. A power analysis is then presented in order to support the results. Finally, examples of mechanical designs of force/torque limiters are shown to illustrate a possible practical implementation of the concept.


Sign in / Sign up

Export Citation Format

Share Document