Case Study on Cost Saving and GHG Emission Reduction From Coupling Air Source Heat Pump With Photovoltaic/Thermal Collector

Author(s):  
Raghad S. Kamel ◽  
Alan S. Fung

TRNSYS simulation software was used to modify a validated Air Source Heat Pump (ASHP) model in an Archetype Sustainable House (ASH) in Toronto. In this model, a Building Integrated Photovoltaic-Thermal Collector (BIPV/T) was coupled with ASHP. The PV/T system arrangement was considered as a part of the south-oriented roof of the house. The warm air generated in the BIPV/T collector was considered the source of the heat pump for heat production. The coupling of BIPV/T and ASHP enables a highly efficient heating system in harsh winter conditions. The developed TRNSYS model of the house along with integrated PV/T system with ASHP was simulated for the whole year to predict the hourly outlet air temperature, thermal energy and electricity obtained from the PV/T array. The results from the simulation were used to estimate the saving in energy and cost as well as to predict the electricity related GHG emission reduction potential from the PV panels. Monthly greenhouse gas (GHG) emission credit from PV production based on hourly GHG emission factor was obtained; the results showed that annual GHG emission due to electricity demand by the ASHP was reduced by 225 kg CO2 (19.3%) when the heat pump was integrated with the PV/T array. Also, in this study, the annual electricity cost credit from PV production based on Time-of-Use (TOU) and the reduction in electricity cost of the heat pump when connected with PV/T systems was calculated and compared with the cost of working the heat pump alone. The results show that there is a saving of $500 in annual electricity bills and GHG emission credit of 862.6 kg CO2 from renewable electricity generation.

Energies ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1279
Author(s):  
Amaya Martínez-Gracia ◽  
Sergio Usón ◽  
Mª Teresa Pintanel ◽  
Javier Uche ◽  
Ángel A. Bayod-Rújula ◽  
...  

A real case study of an energy system based on a Solar Assisted Heat Pump (SAHP) fed by hybrid photovoltaic-thermal solar panels (PVT) and seasonal storage (SS) is presented in this paper. Exergy and exergy cost analyses are proposed as complementary methods for the assessment and better understanding of the efficiency of this cogeneration solar configuration. The system performance takes advantage of storage heat in summer, when the solar resource is high in Spain, and is then later consumed during the cold winter (heating season). The building is devoted to social housing, and it is currently under construction. The assessment is based on simulations developed using TRNSYS, a dynamic simulation software for energy systems. Results show that the unit exergy cost of the solar field is around 6. The cost of the seasonal storage is higher, about 13, and its formation is affected both by its own irreversibility and by the irreversibility of the PVT solar field. The cost of the heat delivered by the heat pump is around 15, being affected by all the upstream units and even by the grid. Besides, the analysis points out strategies for improving the system efficiency, such as increasing the size of the storage tank or improving the control strategy of the boiler.


2019 ◽  
Vol 12 ◽  
pp. 194008291985591 ◽  
Author(s):  
Dejin Su ◽  
Wenli Zhou ◽  
Qixia Du ◽  
Yongchun Huang

This study aims to explore the technical characteristics that affect user satisfaction with air-source heat pump technology which is recognized as one typical cleaner residential heating system and being promoted in China in response to the national “coal to electricity” policy. Moderated hierarchical linear regression analysis was conducted to analyze data from a questionnaire survey of 256 residents in suburban Beijing. Empirical results indicated that product convenience, product design, product reliability, product knowledge, and total cost, respectively, affect user satisfaction, but product safety has no significant effect on user satisfaction. Meanwhile, total cost is an important contingent factor that might weaken the positive effects of product convenience (or product design) on user satisfaction. Our research provides empirical evidence for identifying factors that influence user satisfaction with cleaner residential heating system in response to new energy policy and further provides useful managerial implications for market practice.


2020 ◽  
Vol 220 ◽  
pp. 110084 ◽  
Author(s):  
Tianhe Long ◽  
Zhenyong Qiao ◽  
Meilin Wang ◽  
Yongcai Li ◽  
Jun Lu ◽  
...  

Energies ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 2642 ◽  
Author(s):  
Yi Zhang ◽  
Guanmin Zhang ◽  
Aiqun Zhang ◽  
Yinhan Jin ◽  
Ruirui Ru ◽  
...  

Frost layer on the outdoor air heat exchanger surface in an air-source heat pump (ASHP) can decrease the system coefficient of performance (COP). Although the common defrosting and anti-frosting methods can improve the COP, the periodic defrosting not only reduces the system energy efficiency but also deteriorates the indoor environment. To solve these problems, it is necessary to clearly understand the frosting phenomenon and to achieve the system frost-free operation. This paper focused firstly on the analyses of frosting pathways and frosting maps. Followed by summarizing the characteristics of frost-free technologies. And then the performances of two types of frost-free ASHP (FFASHP) systems were reviewed, and the exergy and economic analysis of a FFASHP heating system were carried out. Finally, the existing problems related to the FFASHP technologies were proposed. Results show that the existing frosting maps need to be further improved. The FFASHP systems can not only achieve continuous frost-free operation but reduce operating cost. And the total COP of the FFASHP heating system is approximately 30–64% higher than that of the conventional ASHP system under the same frosting conditions. However, the investment cost of the FFASHP system increases, and its reliability also needs further field test in a wider frosting environment. In the future, combined with a new frosting map, the control strategy for the FFASHP system should be optimized.


2016 ◽  
Vol 146 ◽  
pp. 410-414 ◽  
Author(s):  
Chihong Cao ◽  
Huixing Li ◽  
Guohui Feng ◽  
Ran Zhang ◽  
Kailiang Huang

Sign in / Sign up

Export Citation Format

Share Document