Experimental Performance Evaluation of a Rechargeable Lithium-Air Battery With Hyper-Branched Polymer Electrolyte

Author(s):  
Susanta K. Das ◽  
K. Joel Berry

Synthesis of hyper branched polymer (HBP) based electrolyte has been examined in this study. A real world lithium-air battery cell was fabricated using the developed HBP electrolyte, oxygen permeable air cathode and lithium metal as anode material. Detailed synthesis procedures of hyper branched polymer electrolyte and the effect of different operation conditions on the real-world lithium-air battery cell were discussed in this paper. The fabricated battery cells were tested under dry air with 0.1mA∼0.2mA discharge current to determine the effect of different operation conditions such as carbon source, electrolyte types and cathode processes. It was found that different processes affect the battery cell performance significantly. We developed optimized battery cell materials upon taking into account the effect of different processes. Several battery cells were fabricated using the same optimized anode, cathode and electrolyte materials in order to determine the battery cells performance and reproducibility. Experimental results showed that the optimized battery cells were able to discharge over 55 hours at over 2.5V. It implies that the optimized battery cell can hold charge for more than two days at over 2.5V. It was also shown that the lithium-air battery cell can be reproduced without loss of performance with the optimized battery cell materials.

Author(s):  
Susanta K. Das ◽  
Abhijit Sarkar

A tri-layered solid electrolyte and an oxygen permeable solid air cathode for lithium-air battery cells were synthesized in this investigation. Detailed fabrication procedures for solid electrolyte, air cathode and the assembly of real-world lithium-air battery cell are described. Fabrication of real-world lithium-air button cells was performed using the synthesized tri-layered solid electrolyte, an oxygen permeable air cathode, and a metallic lithium anode. The lithium-air button cells were tested under dry air with 0.1mA∼0.2mA discharge/charge current at different temperatures. It was found that interfacial contact resistances play an important role in Li-air battery cell performance. Experimental results suggested that the lack of robust interfacial contact among solid electrolyte, air cathode and lithium metal anode were the primary factors for the cell’s high internal resistances. It was also found that once the cell internal resistance issues were resolved, the discharge curve of the battery cell was much smoother and the cell was able to discharge at above 2.0V for up to 40 hours. It indicated that in order to have better performing lithium-air battery cell, interfacial contact resistances issue must be resolved very efficiently.


Author(s):  
Dominik Steinle ◽  
Zhen Chen ◽  
Huu-Dat Nguyen ◽  
Matthias Kuenzel ◽  
Cristina Iojoiu ◽  
...  

AbstractPolymer-based electrolytes potentially enable enhanced safety and increased energy density of lithium-metal batteries employing high capacity, transition metal oxide–positive electrodes. Herein, we report the investigation of lithium-metal battery cells comprising Li[Ni0.6Mn0.2Co0.2]O2 as active material for the positive electrode and a poly(arylene ether sulfone)-based single-ion conductor as the electrolyte incorporating ethylene carbonate (EC) as selectively coordinating molecular transporter. The resulting lithium-metal battery cells provide very stable cycling for more than 300 cycles accompanied by excellent average Coulombic efficiency (99.95%) at an anodic cutoff potential of 4.2 V. To further increase the achievable energy density, the stepwise increase to 4.3 V and 4.4 V is herein investigated, highlighting that the polymer electrolyte offers comparable cycling stability, at least, as common liquid organic electrolytes. Moreover, the impact of temperature and the EC content on the rate capability is evaluated, showing that the cells with a higher EC content offer a capacity retention at 2C rate equal to 61% of the capacity recorded at 0.05 C at 60 °C.


2014 ◽  
Author(s):  
Susanta K. Das ◽  
Salma Rahman ◽  
Jianfang Chai ◽  
Matthew Quast ◽  
Steven E. Keinath ◽  
...  

The effects of electrolyte, catalyst, and the process of preparation of the air-cathode on the performance of Li-air batteries were investigated. An ether based electrolyte was the best choice for Ketjen Black carbon based air cathodes and delivered high specific capacity (1050 mAh/gC) under dry air with cobalt oxide as catalyst. The introduction of an ultrasonication step in the air-cathode fabrication process improved the air-cathode microstructure. BET analyses revealed that the cathode has a higher surface area and mesopore volume when ultrasonication was used compared to those for the cathode fabricated without the ultrasonication step. With the optimized electrolyte and air-cathode, a high capacity of 2620 mAh/gC was obtained for Li-air batteries tested in dry air with a 0.1 mA/cm2 current density.


2020 ◽  
pp. 118940
Author(s):  
Zheng Zhang ◽  
Ying Huang ◽  
Heng Gao ◽  
Chao Li ◽  
Jiaxin Huang ◽  
...  

2021 ◽  
Vol 37 ◽  
pp. 215-223
Author(s):  
Zhaolin Lv ◽  
Qian Zhou ◽  
Shu Zhang ◽  
Shanmu Dong ◽  
Qinglei Wang ◽  
...  

Author(s):  
Qizhi Zhong ◽  
Bao Liu ◽  
Bingjun Yang ◽  
Yali Li ◽  
Junshuai Li ◽  
...  

Author(s):  
Maonan Wang ◽  
Chun Chang ◽  
Feng Ji

Abstract The voltage-based equalization strategy is widely used in the industry because the voltage (U) of the battery cell is very easy to obtain, but it is difficult to provide an accurate parameter for the battery management system (BMS). This study proposes a new equalization strategy, which is based on the difference between the state of charge (SOC) of any two battery cells in the battery pack, that is, a ΔSOC-based equalization strategy. The new strategy is not only as simple as the voltage-based equalization strategy, but it can also provide an accurate parameter for the BMS. Simply put, using the relationship between the open circuit voltage and the SOC of the battery pack, the proposed strategy can convert the difference between the voltage of the battery cells into ΔSOC, which renders a good performance. Additionally, the required parameters are all from the BMS, and no additional calculation is required, which makes the strategy as simple as the voltage-based balancing strategy. The four experiments show that the relative errors of ΔSOC estimated by the ΔSOC-based equalization strategy are 0.37%, 0.39%, 0.1% and 0.17%, and thereby demonstrate that the ΔSOC-based equalization strategy proposed in this study shows promise in replacing the voltage-based equalization strategy within the industry to obtain better performance.


Sign in / Sign up

Export Citation Format

Share Document