Experimental Performance Evaluation of a Rechargeable Lithium-Air Battery Operating at Room Temperature

2014 ◽  
Author(s):  
Susanta K. Das ◽  
Salma Rahman ◽  
Jianfang Chai ◽  
Matthew Quast ◽  
Steven E. Keinath ◽  
...  

The effects of electrolyte, catalyst, and the process of preparation of the air-cathode on the performance of Li-air batteries were investigated. An ether based electrolyte was the best choice for Ketjen Black carbon based air cathodes and delivered high specific capacity (1050 mAh/gC) under dry air with cobalt oxide as catalyst. The introduction of an ultrasonication step in the air-cathode fabrication process improved the air-cathode microstructure. BET analyses revealed that the cathode has a higher surface area and mesopore volume when ultrasonication was used compared to those for the cathode fabricated without the ultrasonication step. With the optimized electrolyte and air-cathode, a high capacity of 2620 mAh/gC was obtained for Li-air batteries tested in dry air with a 0.1 mA/cm2 current density.

2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Die Su ◽  
Yi Pei ◽  
Li Liu ◽  
Zhixiao Liu ◽  
Junfang Liu ◽  
...  

AbstractWearable and portable mobile phones play a critical role in the market, and one of the key technologies is the flexible electrode with high specific capacity and excellent mechanical flexibility. Herein, a wire-in-wire TiO2/C nanofibers (TiO2 ww/CN) film is synthesized via electrospinning with selenium as a structural inducer. The interconnected carbon network and unique wire-in-wire nanostructure cannot only improve electronic conductivity and induce effective charge transports, but also bring a superior mechanic flexibility. Ultimately, TiO2 ww/CN film shows outstanding electrochemical performance as free-standing electrodes in Li/K ion batteries. It shows a discharge capacity as high as 303 mAh g−1 at 5 A g−1 after 6000 cycles in Li half-cells, and the unique structure is well-reserved after long-term cycling. Moreover, even TiO2 has a large diffusion barrier of K+, TiO2 ww/CN film demonstrates excellent performance (259 mAh g−1 at 0.05 A g−1 after 1000 cycles) in K half-cells owing to extraordinary pseudocapacitive contribution. The Li/K full cells consisted of TiO2 ww/CN film anode and LiFePO4/Perylene-3,4,9,10-tetracarboxylic dianhydride cathode possess outstanding cycling stability and demonstrate practical application from lighting at least 19 LEDs. It is, therefore, expected that this material will find broad applications in portable and wearable Li/K-ion batteries.


Nanoscale ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 5812-5816 ◽  
Author(s):  
Jinyun Liu ◽  
Xirong Lin ◽  
Tianli Han ◽  
Qianqian Lu ◽  
Jiawei Long ◽  
...  

Metallic germanium (Ge) as the anode can deliver a high specific capacity and high rate capability in lithium ion batteries.


Nanomaterials ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 216 ◽  
Author(s):  
Ying Yu ◽  
Yuxin Zuo ◽  
Ying Liu ◽  
Youjun Wu ◽  
Zhonghao Zhang ◽  
...  

Al-air batteries are regarded as potential power source for flexible and wearable devices. However, the traditional cathodes of Al-air batteries are easy to be broken after continuous bending. This is why few Al-air batteries have been tested under the state of dynamic bending so far. Herein, carbon nanofibers incorporated with Mn3O4 catalyst have been prepared as bending-resistant cathodes through direct electrospinning. The cathode assembled in Al-air battery showed excellent electrochemical and mechanical stability. A high specific capacity of 1021 mAh/cm2 was achieved after bending 1000 times, which is 81.7% of that in platform state. This work will facilitate the progress of using Al-air battery in flexible electronics.


2014 ◽  
Vol 7 (5) ◽  
pp. 1643-1647 ◽  
Author(s):  
Ya You ◽  
Xing-Long Wu ◽  
Ya-Xia Yin ◽  
Yu-Guo Guo

High-quality Prussian blue crystals with a small number of vacancies and a low water content show high specific capacity and remarkable cycle stability as cathode materials for Na-ion batteries.


Author(s):  
Susanta K. Das ◽  
K. Joel Berry

Synthesis of hyper branched polymer (HBP) based electrolyte has been examined in this study. A real world lithium-air battery cell was fabricated using the developed HBP electrolyte, oxygen permeable air cathode and lithium metal as anode material. Detailed synthesis procedures of hyper branched polymer electrolyte and the effect of different operation conditions on the real-world lithium-air battery cell were discussed in this paper. The fabricated battery cells were tested under dry air with 0.1mA∼0.2mA discharge current to determine the effect of different operation conditions such as carbon source, electrolyte types and cathode processes. It was found that different processes affect the battery cell performance significantly. We developed optimized battery cell materials upon taking into account the effect of different processes. Several battery cells were fabricated using the same optimized anode, cathode and electrolyte materials in order to determine the battery cells performance and reproducibility. Experimental results showed that the optimized battery cells were able to discharge over 55 hours at over 2.5V. It implies that the optimized battery cell can hold charge for more than two days at over 2.5V. It was also shown that the lithium-air battery cell can be reproduced without loss of performance with the optimized battery cell materials.


2017 ◽  
Vol 1 (5) ◽  
pp. 1082-1089 ◽  
Author(s):  
Ryohei Mori

To develop a high-capacity rechargeable aluminum–air battery with resistance toward the degradation induced by long-term charge–discharge electrochemical reactions, non-oxide ceramic materials, e.g., TiN, TiC, and TiB2, were used as air cathode materials with the ionic liquid 1-ethyl-3-methylimidazolium chloride as the electrolyte.


Author(s):  
Lei Chen ◽  
Yang MinRui ◽  
Kong Fan ◽  
Wenling Du ◽  
Jiyuan Guo ◽  
...  

With the increasing demand for sustainable and clean energies, seeking high-capacity density electrode materials applied in the rechargeable metal-ion batteries is urgent. In this work, using first-principles calculations, we evaluate...


2020 ◽  
Vol 44 (4) ◽  
pp. 1624-1631
Author(s):  
Junjie Wang ◽  
Lifeng Cui ◽  
Shasha Li ◽  
Tingting Pu ◽  
Xueyou Fang ◽  
...  

An FeSi2–air primary battery in saline electrolyte was assembled, which shows a high specific capacity of 1.90 A h g−1.


Research ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-9
Author(s):  
Yuqian Li ◽  
Liyuan Zhang ◽  
Xiuli Wang ◽  
Xinhui Xia ◽  
Dong Xie ◽  
...  

Amorphous carbon is considered as a prospective and serviceable anode for the storage of sodium. In this contribution, we illuminate the transformation rule of defect/void ratio and the restrictive relation between specific capacity and rate capability. Inspired by this mechanism, ratio of plateau/slope capacity is regulated via temperature-control pyrolysis. Moreover, pore-forming reaction is induced to create defects, open up the isolated voids, and build fast ion channels to further enhance the capacity and rate ability. Numerous fast ion channels, high ion-electron conductivity, and abundant defects lead the designed porous hard carbon/Co3O4 anode to realize a high specific capacity, prolonged circulation ability, and enhanced capacity at high rates. This research deepens the comprehension of sodium storage behavior and proposes a fabrication approach to achieve high performance carbonaceous anodes for sodium-ion batteries.


2019 ◽  
Vol 7 (22) ◽  
pp. 13727-13735 ◽  
Author(s):  
Jinjin Wang ◽  
Jian-Gan Wang ◽  
Huanyan Liu ◽  
Chunguang Wei ◽  
Feiyu Kang

Zinc ion stabilized MnO2 nanospheres with a flower-like morphology and mesoporous texture are prepared, and they show high specific capacity and superior cycling stability for Zn-ion batteries.


Sign in / Sign up

Export Citation Format

Share Document