Effect of Thermal Growth on Vibration Behavior of Flexible Rotor System Mounted on MR Squeeze Film Damper

Author(s):  
Hamed Ghaednia ◽  
Abdolreza Ohadi

In this paper a Magnetorheological squeeze film damper (MR-SFD) has been modeled using two governing equations. Firstly, considering Bingham model for MR fluid (MRF), a hydrodynamic model has been presented. Secondly, a thermal model for the system has been modeled and used to calculate the temperature rise in the squeeze film and different damper’s components. Time and frequency domain analysis has been performed over a system consists of an unbalanced flexible rotor (FE model) mounted on a pair of MR-SFDs. Results show that the amplitude of rotor’s vibration is not a simple function of electrical current such that, increase in the current cannot guaranty decrease in the value of amplitude. The steady state response of rotor versus rotation velocity is presented for different values of electrical current, which show the effects of temperature and current on the steady state response of rotor.

2011 ◽  
Vol 134 (1) ◽  
Author(s):  
Hamed Ghaednia ◽  
Abdolreza Ohadi

Semiactive vibration reduction devices using magnetorheological fluid (MR fluid) have proven to be effective in different engineering applications. MR squeeze film damper (MR-SFD) is one type of such devices that can be used to reduce unwanted vibration in rotary machinery. The behavior of these devices is a function of electric current, which controls the magnetic field in the lubricant and therefore causes the viscosity of MR fluid to be changed. In spite of all researches have been carried out in behavior analysis of different sorts of MR-SFDs, investigations over thermal growth effects on the efficiency of these actuators, in vibration reduction applications, are rare. In this paper, a Magnetorheological squeeze film damper (MR-SFD) has been modeled using two governing equations. First, considering the Bingham model for MR fluid (MRF), a hydrodynamic model has been presented. Second, a thermal model for the system has been modeled and used to calculate the temperature rise in the squeeze film and different damper’s components. Temperature rise in MR-SFD has been considered in this paper as a novel study. Time and frequency domain analysis using Newmark method has been performed over a finite element model of the system consisting of an unbalanced flexible rotor mounted on a pair of MR-SFDs. Obtained results show that the amplitude of rotor’s vibration is not a simple function of electrical current such that, increase in the current cannot guarantee decrease in the value of amplitude. Two major phenomena have been observed during studies; rigid dampers, and generation of new critical speed. The behavior of the rotor is deeply affected by these phenomena. The steady state response of rotor versus rotation velocity is presented for different values of electrical current, which show the effects of temperature and current on the steady state response of rotor. Generally, temperature rise results in inefficiency of MR-SFDs to suppress the vibration of the rotor, especially for rotational velocities near critical speed. Due to temperature rise, appearance of the second critical speed occurs at higher values of electrical current. In addition, it delays the “rigid damper” phenomenon causing rotor response to decrease.


1997 ◽  
Vol 119 (1) ◽  
pp. 85-88 ◽  
Author(s):  
Chin-Shong Chen ◽  
S. Natsiavas ◽  
H. D. Nelson

The stability properties of periodic steady state response of a nonlinear geared rotordynamic system are investigated. The nonlinearity arises because one support of the system includes a cavitated squeeze film damper, while the excitation is caused by mass unbalance. The dynamical model and the procedure which leads to periodic steady state response of the system examined have been developed in an earlier paper. Here, the emphasis is placed on analyzing the stability characteristics of located periodic solutions. Also, within ranges of the excitation frequency where no stable periodic solutions are detected, the long time behavior of the system is investigated by direct integration of the equations of motion. It is shown that large order subharmonic, quasiperiodic and chaotic motions may coexist with unstable periodic response in these frequency ranges. Finally, attention is focused on practical consequences of these motions.


1983 ◽  
Vol 105 (3) ◽  
pp. 551-556 ◽  
Author(s):  
D. L. Taylor ◽  
B. R. K. Kumar

This paper considers the steady-state response due to unbalance of a planar rigid rotor carried in a short squeeze film damper with linear centering spring. The damper fluid forces are determined from the short bearing, cavitated (π film) solution of Reynold’s equation. Assuming a circular centered orbit, a change of coordinates yields equations whose steady-state response are constant eccentricity and phase angle. Focusing on this steady-state solution results in reducing the problem to solutions of two simultaneous algebraic equations. A method for finding the closed-form solution is presented. The system is nondimensionalized, yielding response in terms of an unbalance parameter, a damper parameter, and a speed parameter. Several families of eccentricity-speed curves are presented. Additionally, transmissibility and power consumption solutions are present.


Author(s):  
Tsu-Wei Lin ◽  
Yuan Kang ◽  
Chun-Chieh Wang ◽  
Chuan-Wei Chang ◽  
Chih-Pin Chiang

This study utilizes genetic algorithm to minimize the condition number of Hermitian matrix of influence coefficient (HMIC) to reduce the computation errors in balancing procedure. Then, the optimal locations of balancing planes and sensors would be obtained as fulfilling optimization. The finite element method is used to determine the steady-state response of flexible rotor-bearing systems. The optimization improves the balancing accuracy, which can be validated by the experiments of balancing a rotor kit.


Author(s):  
J. F. Walton ◽  
H. Heshmat

In this paper results of rotordynamic response and transient tests of a novel, high load squeeze film damper design, are presented. The spiral foil multi-squeeze film damper has been previously shown to provide two to four fold or larger increases in damping levels without resorting to significantly decreased damper clearances or increased lengths. By operating with a total clearance of approximately twice conventional designs, the non-linearities associated with high eccentricity operation are avoided. Rotordynamic tests with a dual squeeze film configuration were completed. As a part of the overall testing program, a flexible rotor system was subjected to high steady state imbalance levels and transient simulated bladeloss events for up to 0.254 mm (0.01 in) mass c.g offset or 180 gm-cm (2.5 oz-in) imbalance. The spiral foil multi-squeeze film damper demonstrated that the steady state imbalance and simulated bladeloss transient response of a flexible rotor operating above its first bending critical speed could be readily controlled. Rotor system imbalance sensitivity and logarithmic decrement are presented showing the characteristics of the system with the damper installed. The ability to accommodate high steady state and transient imbalance conditions make this damper well suited to a wide range of rotating machinery, including aircraft gas turbine engines.


Author(s):  
Qihan Li ◽  
Litang Yan ◽  
James F. Hamilton

This paper presents an analysis of the steady-state unbalance response of a dual-rotor gas turbine engine with a flexible intershaft squeeze film damper using a simplified transfer matrix method. The simplified transfer matrix method is convenient for the evaluation of the critical speed and response of the rotor system with various supports, shaft coupling, intershaft bearing, etc. The steady-state unbalance response of the rotor system is calculated for different shaft rotation speeds. The damping effects of an intershaft squeeze film damper with different radial clearances under various levels of rotor unbalance are investigated.


1993 ◽  
Vol 115 (2) ◽  
pp. 347-352 ◽  
Author(s):  
J. F. Walton ◽  
H. Heshmat

In this paper results of rotordynamic response and transient tests of a novel, high load squeeze film damper design are presented. The spiral foil multisqueeze film damper has been previously shown to provide two to fourfold or larger increases in damping levels without resorting to significantly decreased damper clearances or increased lengths. By operating with a total clearance of approximately twice conventional designs, the nonlinearities associated with high-eccentricity operation are avoided. Rotordynamic tests with a dual squeeze film configuration were completed. As a part of the overall testing program, a flexible rotor system was subjected to high steady-state imbalance levels and transient simulated blade-loss events for up to 0.254 mm (0.01 in.) mass c. g. offset or 180 g-cm (2.5 oz-in.) imbalance. The spiral foil multisqueeze film damper demonstrated that the steady-state imbalance and simulated blade-loss transient response of a flexible rotor operating above its first bending critical speed could be readily controlled. Rotor system imbalance sensitivity and logarithmic decrement are presented showing the characteristics of the system with the damper installed. The ability to accommodate high steady-state and transient imbalance conditions make this damper well suited to a wide range of rotating machinery, including aircraft gas turbine engines.


Sign in / Sign up

Export Citation Format

Share Document