Entropy Generation Minimization of Confined Nanofluids Laminar Flow Around a Block

Author(s):  
Mehdi Boghrati ◽  
Ehsan Ebrahimnia Bajestan ◽  
Vahid Etminan

According to the importance of cooling and heating process of a solid object, entropy generation in confined flow around a block is studied. In the current study, numerical simulation of laminar flow and heat transfer of nanofluids with nanoparticles of different shapes is considered. The nanofluids are water mixture with either Al2O3 nanoshperes or carbon nanotubes (CNTs). The incompressible Navier-Stokes and energy equations are solved numerically in a body fitted coordinates system using a control volume technique. The flow patterns and temperature fields for different values of the particles concentrations are examined in detail. Furthermore, the effects of nanoparticles shape and concentration on the heat transfer are studied. Furthermore the influences of nanofluids on pressure drop and pump power is examined. On the other hand, the entropy generation minimization is considered as the optimization criterion. The results indicate that in most cases the nanofluids enhance the heat transfer as well as pressure drop. It is interesting to note that the shape of nanoparticles is critical in determining the key mechanism of heat transport in nanofluids. Nanofluids with cylindrical nanoparticles exhibit a greater increase in heat transfer compared with nanofluids having spherical shape nanoparticles.

Author(s):  
Eric B. Ratts ◽  
Atul G. Raut

This paper addresses the thermodynamic optimum of single-phase convective heat transfer in fully developed flow for uniform and constant heat flux. The optimal Reynolds number is obtained using the entropy generation minimization (EGM) method. Entropy generation due to viscous dissipation and heat transfer dissipation in the flow passage are summed, and then minimized with respect to Reynolds number based on hydraulic diameter. For fixed mass flow rate and fixed total heat transfer rate, and the assumption of uniform heat flux, an optimal Reynolds number for laminar as well as turbulent flow is obtained. In addition, the method quantifies the flow irreversibilities. It was shown that the ratio of heat transfer dissipation to viscous dissipation at minimum entropy generation was 5:1 for laminar flow and 29:9 for turbulent flow. For laminar flow, the study compared non-circular cross-sections to the circular cross-section. The optimal Reynolds number was determined for the following cross-sections: square, equilateral triangle, and rectangle with aspect ratios of two and eight. It was shown that the rectangle with the higher aspect ratio had the smallest optimal Reynolds number, the smallest entropy generation number, and the smallest flow length.


2008 ◽  
Vol 130 (3) ◽  
Author(s):  
W. A. Khan ◽  
J. R. Culham ◽  
M. M. Yovanovich

An entropy generation minimization method is applied to study the thermodynamic losses caused by heat transfer and pressure drop for the fluid in a cylindrical pin-fin heat sink and bypass flow regions. A general expression for the entropy generation rate is obtained by considering control volumes around the heat sink and bypass regions. The conservation equations for mass and energy with the entropy balance are applied in both regions. Inside the heat sink, analytical/empirical correlations are used for heat transfer coefficients and friction factors, where the reference velocity used in the Reynolds number and the pressure drop is based on the minimum free area available for the fluid flow. In bypass regions theoretical models, based on laws of conservation of mass, momentum, and energy, are used to predict flow velocity and pressure drop. Both in-line and staggered arrangements are studied and their relative performance is compared to the same thermal and hydraulic conditions. A parametric study is also performed to show the effects of bypass on the overall performance of heat sinks.


Author(s):  
Reza Kamali ◽  
Bamdad Barari ◽  
Ashkan Abbasian Shirazi

In this study, Numerical analysis has been used to investigate entropy generation for array of pin-fin heat sink. Technique is applied to study the thermodynamic losses caused by heat transfer and pressure drop in pin-fin heat sinks. A general expression for the entropy generation rate is obtained by considering the whole heat sink as a control volume and applying the conservation equations for mass and energy with the entropy balance. Analytical and empirical correlations for heat transfer coefficients and friction factors are used in the numerical modeling. Also effects of heat transfer and pressure drop in entropy generation in control volume over pin-fins have been studied. Numerical analysis has been used for three different models of pin-fin heat sinks. The models are different in cross section area. These cross section areas are circle, horizontal ellipse and vertical ellipse which mentioned in next sections. Reference velocity used in Reynolds number and pressure drop is based on the minimum free area available for the fluid flow. Also for numerical analysis in-line arrangement of fins has been investigated and their relative performance is compared. At the end, the performance of these three models has been compared.


Author(s):  
Waqar A. Khan ◽  
Michael M. Yovanovich

An entropy generation minimization, EGM, method is applied to study the thermodynamic losses caused by heat transfer and pressure drop for the fluid in a cylindrical pin-fin heat sink and bypass flow regions. A general expression for the entropy generation rate is obtained by considering control volumes around heat sink and bypass regions. The conservation equations for mass and energy with the entropy balance are applied in both regions. Inside the heat sink, analytical/empirical correlations are used for heat transfer coefficients and friction factors, where the reference velocity used in Reynolds number and pressure drop is based on the minimum free area available for the fluid flow. In bypass regions theoretical models, based on laws of conservation of mass, momentum and energy, are used to predict flow velocity and pressure drop. Both in-line and staggered arrangements are studied and their relative performance is compared for the same thermal and hydraulic conditions. A parametric study is also performed to show the effects of bypass on the overall performance of heat sinks.


2006 ◽  
Vol 128 (10) ◽  
pp. 1070-1080 ◽  
Author(s):  
Debashis Pramanik ◽  
Sujoy K. Saha

The heat transfer and the pressure drop characteristics of laminar flow of viscous oil through rectangular and square ducts with internal transverse rib turbulators on two opposite surfaces of the ducts and fitted with twisted tapes have been studied experimentally. The tapes have been full length, short length, and regularly spaced types. The transverse ribs in combination with full-length twisted tapes have been found to perform better than either ribs or twisted tapes acting alone. The heat transfer and the pressure drop measurements have been taken in separate test sections. Heat transfer tests were carried out in electrically heated stainless steel ducts incorporating uniform wall heat flux boundary conditions. Pressure drop tests were carried out in acrylic ducts. The flow was periodically fully developed in the regularly spaced twisted-tape elements case and decaying swirl flow in the short-length twisted tapes case. The flow characteristics are governed by twist ratio, space ratio, and length of twisted tape, Reynolds number, Prandtl number, rod-to-tube diameter ratio, duct aspect ratio, rib height, and rib spacing. Correlations developed for friction factor and Nusselt number have predicted the experimental data satisfactorily. The performance of the geometry under investigation has been evaluated. It has been found that on the basis of both constant pumping power and constant heat duty, the regularly spaced twisted-tape elements in specific cases perform marginally better than their full-length counterparts. However, the short-length twisted-tape performance is worse than the full-length twisted tapes. Therefore, full-length twisted tapes and regularly spaced twisted-tape elements in combination with transverse ribs are recommended for laminar flows. However, the short-length twisted tapes are not recommended.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Arjumand Adil ◽  
Sonam Gupta ◽  
Pradyumna Ghosh

CFD simulation of the heat transfer and pressure drop characteristics of different nanofluids in a minichannel flow has been explained using FLUENT version 6.3.26. Different nanofluids with nanoparticles of Al2O3, CuO, SiO2, and TiO2have been used in the simulation process. A comparison of the experimental and computational results has been made for the heat transfer and pressure drop characteristics for the case of Al2O3-water nanofluid for the laminar flow. Also, computations have been made by considering Brownian motion as well as without considering Brownian motion of the nanoparticles. After verification of the computational model with the experimental results for Al2O3-water nanofluid, the simulations were performed for the same experimental readings for different nanofluids in the laminar flow regime to find out the heat transfer and pressure drop characteristics.


2019 ◽  
Vol 29 (12) ◽  
pp. 4746-4763 ◽  
Author(s):  
Qingang Xiong ◽  
Arash Khosravi ◽  
Narjes Nabipour ◽  
Mohammad Hossein Doranehgard ◽  
Aida Sabaghmoghadam ◽  
...  

Purpose This paper aims to numerically investigate the nanofluid flow, heat transfer and entropy generation during natural convection in an annulus. Design/methodology/approach The lattice Boltzmann method is used to simulate the velocity and temperature fields. Furthermore, some special modifications are applied to make the lattice Boltzmann method capable for simulation in the curved boundary conditions. The annulus is filled with CuO-water nanofluid. The dynamic viscosity of nanofluid is estimated using KLL (Koo-Kleinstreuer-Li) model, and the nanoparticle shape effect is taken account in calculating the thermal conductivity. On the other hand, the local/volumetric entropy generation is used to show the irreversibility under influence of different parameters. Findings The effect of considered governing parameters including Rayleigh number (103<Ra < 106); nanoparticle concentration (0<<0.04) and configuration of annulus on the flow structure; temperature field; and local and total entropy generation and heat transfer rate are presented. Originality/value The originality of this work is using of lattice Boltzmann method is simulation of natural convection in a curved configuration and using of Koo–Kleinstreuer–Li correlation for simulation of nanofluid.


Entropy ◽  
2020 ◽  
Vol 22 (2) ◽  
pp. 215 ◽  
Author(s):  
Steve Djetel-Gothe ◽  
François Lanzetta ◽  
Sylvie Bégot

The second law of thermodynamics is applied to evaluate the influence of entropy generation on the performances of a cold heat exchanger of an experimental Stirling refrigeration machine by means of three factors: the entropy generation rate N S , the irreversibility distribution ratio ϕ and the Bejan number B e | N S based on a dimensionless entropy ratio that we introduced. These factors are investigated as functions of characteristic dimensions of the heat exchanger (hydraulic diameter and length), coolant mass flow and cold gas temperature. We have demonstrated the role of these factors on the thermal and fluid friction irreversibilities. The conclusions are derived from the behavior of the entropy generation factors concerning the heat transfer and fluid friction characteristics of a double-pipe type heat exchanger crossed by a coolant liquid (55/45 by mass ethylene glycol/water mixture) in the temperature range 240 K < TC < 300 K. The mathematical model of entropy generation includes experimental measurements of pressures, temperatures and coolant mass flow, and the characteristic dimensions of the heat exchanger. A large characteristic length and small hydraulic diameter generate large entropy production, especially at a low mean temperature, because the high value of the coolant liquid viscosity increases the fluid frictions. The model and experiments showed the dominance of heat transfer over viscous friction in the cold heat exchanger and B e | N S → 1 and ϕ → 0 for mass flow rates m ˙ → 0.1 kg.s−1.


Sign in / Sign up

Export Citation Format

Share Document