Classical and Generalized Coupled Thermoelasticity of a Layer

Author(s):  
S. K. Hosseini Zad ◽  
M. R. Eslami

A one-dimensional thermoelastic region is modeled based on the classical and generalized coupled thermoelasticity theories, and a finite element scheme is employed to obtain the field variables directly in the space and time domains. The problem is solved for two different types of boundary conditions (BCs), and the behavior of temperature, displacement and stress waves according to these BCs and based on the classical and generalized coupled thermoelasticity theories are shown and compared with each other. Several characteristics of thermoelastic waves are examined according to this analysis, and comparison between the behavior of classical and generalized coupled thermoelasticity theories in extended period of time is made to examine the damping effects of each theory.

Author(s):  
S. K. Hosseini zad ◽  
A. Komeili ◽  
A. H. Akbarzadeh ◽  
M. R. Eslami

This study concentrates on the simulation of elastic and thermoelastic wave propagation in two-dimensional thermoelastic regions based on the classical and generalized coupled thermoelasticity. A finite element scheme is employed to obtain the field variables directly in the space and time domains. The FE method is based on the virtual displacement and the Galerkin technique, which is directly applied to the governing equations. The Newmark algorithm is used to solve the FE problem in time domain. Solving 2D coupled thermoelasticity equations leads to obtain the distribution of temperature, displacement and stresses through the domain. The problem is solved for two different type of boundary conditions (BCs), and the behavior of temperature, displacement and stress waves according to these BCs and based on the classical and generalized coupled thermoelasticity theories are shown and compared with each other. Several characteristics of the thermoelastic waves in two-dimensional domains are discussed according to this analysis.


2020 ◽  
Vol 90 (4) ◽  
pp. 38-47
Author(s):  
VL.I. KOLCHUNOV ◽  
◽  
D.V. MARTYNENKO ◽  

A computational model and the results of numerical studies of the structure of a platform joint in a reinforced concrete precast-monolithic frame of a building from panel-frame elements of industrial production are presented. Modeling of the plane stress state of the joint structure is carried out by a finite element scheme, using finite elements of different types and a nonlinear law of deformation to determine the design characteristics of reinforced concrete. The parameters of deformation of the platform joint structure at different loading levels, including stage-by-stage cracking and destruction, have been determined. The schemes of distribution and stress concentration zones in the characteristic sections of the platform joint are established when the distributed load is transferred from the frame of the panel-frame to the hollow-core floor panels and concrete for embedding the joint in the presence of a cavity in the frame frame for centering elements.


2001 ◽  
Vol 4 (2) ◽  
pp. 67-78 ◽  
Author(s):  
Ana Alonso ◽  
Anahí Dello Russo ◽  
César Otero-Souto ◽  
Claudio Padra ◽  
Rodolfo Rodríguez

Sign in / Sign up

Export Citation Format

Share Document