sobolev equation
Recently Published Documents


TOTAL DOCUMENTS

56
(FIVE YEARS 21)

H-INDEX

9
(FIVE YEARS 2)

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Mehdi Dehghan ◽  
Baharak Hooshyarfarzin ◽  
Mostafa Abbaszadeh

Purpose This study aims to use the polynomial approximation method based on the Pascal polynomial basis for obtaining the numerical solutions of partial differential equations. Moreover, this method does not require establishing grids in the computational domain. Design/methodology/approach In this study, the authors present a meshfree method based on Pascal polynomial expansion for the numerical solution of the Sobolev equation. In general, Sobolev-type equations have several applications in physics and mechanical engineering. Findings The authors use the Crank-Nicolson scheme to discrete the time variable and the Pascal polynomial-based (PPB) method for discretizing the spatial variables. But it is clear that increasing the value of the final time or number of time steps, will bear a lot of costs during numerical simulations. An important purpose of this paper is to reduce the execution time for applying the PPB method. To reach this aim, the proper orthogonal decomposition technique has been combined with the PPB method. Originality/value The developed procedure is tested on various examples of one-dimensional, two-dimensional and three-dimensional versions of the governed equation on the rectangular and irregular domains to check its accuracy and validity.


2021 ◽  
Vol 296 ◽  
pp. 759-798
Author(s):  
Denis Bonheure ◽  
Jean-Baptiste Casteras ◽  
Francesca Gladiali

2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
M. H. Heydari ◽  
A. Atangana

AbstractThis paper applies the Heydari–Hosseininia nonsingular fractional derivative for defining a variable-order fractional version of the Sobolev equation. The orthonormal shifted discrete Legendre polynomials, as an appropriate family of basis functions, are employed to generate an operational matrix method for this equation. A new fractional operational matrix related to these polynomials is extracted and employed to construct the presented method. Using this approach, an algebraic system of equations is obtained instead of the original variable-order equation. The numerical solution of this system can be found easily. Some numerical examples are provided for verifying the accuracy of the generated approach.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Yifan Qin ◽  
Xiaocheng Yang ◽  
Yunzhu Ren ◽  
Yinghong Xu ◽  
Wahidullah Niazi

In this paper, one class of finite difference scheme is proposed to solve nonlinear space fractional Sobolev equation based on the Crank-Nicolson (CN) method. Firstly, a fractional centered finite difference method in space and the CN method in time are utilized to discretize the original equation. Next, the existence, uniqueness, stability, and convergence of the numerical method are analyzed at length, and the convergence orders are proved to be O τ 2 + h 2 in the sense of l 2 -norm, H α / 2 -norm, and l ∞ -norm. Finally, the extensive numerical examples are carried out to verify our theoretical results and show the effectiveness of our algorithm in simulating spatial fractional Sobolev equation.


2021 ◽  
Vol 41 (2) ◽  
pp. 187-204
Author(s):  
Idowu Esther Ijaodoro ◽  
El Hadji Abdoulaye Thiam

We consider a bounded domain \(\Omega\) of \(\mathbb{R}^N\), \(N \geq 3\), \(h\) and \(b\) continuous functions on \(\Omega\). Let \(\Gamma\) be a closed curve contained in \(\Omega\). We study existence of positive solutions \(u \in H^1_0(\Omega)\) to the perturbed Hardy-Sobolev equation: \[-\Delta u+hu+bu^{1+\delta}=\rho^{-\sigma}_{\Gamma} u^{2^*_{\sigma}-1} \quad \textrm{ in } \Omega,\] where \(2^*_{\sigma}:=\frac{2(N-\sigma)}{N-2}\) is the critical Hardy-Sobolev exponent, \(\sigma\in [0,2)\), \(0\lt\delta\lt\frac{4}{N-2}\) and \(\rho_{\Gamma}\) is the distance function to \(\Gamma\). We show that the existence of minimizers does not depend on the local geometry of \(\Gamma\) nor on the potential \(h\). For \(N=3\), the existence of ground-state solution may depends on the trace of the regular part of the Green function of \(-\Delta+h\) and or on \(b\). This is due to the perturbative term of order \(1+\delta\).


Sign in / Sign up

Export Citation Format

Share Document