DEFORMATION AND CRACKING OF THE PLATFORM JOINT OF THE PREFABRICATED-MONOLITHICRC BUILDING FRAME

2020 ◽  
Vol 90 (4) ◽  
pp. 38-47
Author(s):  
VL.I. KOLCHUNOV ◽  
◽  
D.V. MARTYNENKO ◽  

A computational model and the results of numerical studies of the structure of a platform joint in a reinforced concrete precast-monolithic frame of a building from panel-frame elements of industrial production are presented. Modeling of the plane stress state of the joint structure is carried out by a finite element scheme, using finite elements of different types and a nonlinear law of deformation to determine the design characteristics of reinforced concrete. The parameters of deformation of the platform joint structure at different loading levels, including stage-by-stage cracking and destruction, have been determined. The schemes of distribution and stress concentration zones in the characteristic sections of the platform joint are established when the distributed load is transferred from the frame of the panel-frame to the hollow-core floor panels and concrete for embedding the joint in the presence of a cavity in the frame frame for centering elements.

2017 ◽  
Vol 11 (1) ◽  
pp. 887-895
Author(s):  
Yuzhuo Wang ◽  
Jian Song ◽  
Cancan Wang ◽  
Chuanguo Fu

Introduction: This paper presents results from a set of numerical studies on the cracked reinforced concrete column at high temperature. Methods: The macroscopic finite element model used in the accounts analysis for high temperature properties of constitutive materials. The validity of the model is established by comparing the predictions from numerical analysis with the data measured in the fire test. Result and Conclusion: Data from the test indicated that the temperature of rebar in column with cracks is 57% ~ 130% higher than that without cracks under the same condition, and different types of crack had significant influence on the bearing capacity of column. These results from parametric studies were utilized to propose ultimate bearing capacity of cracked reinforced concrete column.


Author(s):  
Evgeniya M. Tupikova

The aim of the work. The static analysis and comparison of the results for translational shells under equally distributed load of dead weight are provided. The shells of the similar general dimensions in plan and rise of four different types: translation of catenary along catenary, circle along circle, ellipse along ellipse and sinusoid along sinusoid are investigated. Methods. The finite element method was applied for the analysis. The research was conducted for the shells of material of reinforced concrete characteristics. Results. The comparison has shown that shells of catenary and circle translation surface demonstrate the most advantageous behavior under loading; the worst results for reinforced concrete were got for ellipse along ellipse translation shell. The peculiarities of each type behavior were revealed, that is of interest for their prospective reduction to practice of structural design.


2020 ◽  
Vol 10 (15) ◽  
pp. 5272
Author(s):  
Shinichiro Okazaki ◽  
Chisato Okuma ◽  
Mao Kurumatani ◽  
Hidenori Yoshida ◽  
Manabu Matsushima

Using a finite-element scheme based on a damage model, a numerical system is developed to predict cracks in reinforced concrete beams due to corrosion expansion. The numerical results show that the width of such cracks is affected considerably by (i) the shape of the reinforcing bar, (ii) the presence of stirrups, and (iii) the number of main reinforcement bars. Specimens of reinforced concrete beams are fabricated to simulate those used in the analysis, and we determine how the crack width is related to the amount of the reinforcing bar corrosion through electrolytic corrosion experiments. The experimental results are used to assess the validity of the numerical ones, and the latter are considered to reproduce the former.


Author(s):  
S. K. Hosseini Zad ◽  
M. R. Eslami

A one-dimensional thermoelastic region is modeled based on the classical and generalized coupled thermoelasticity theories, and a finite element scheme is employed to obtain the field variables directly in the space and time domains. The problem is solved for two different types of boundary conditions (BCs), and the behavior of temperature, displacement and stress waves according to these BCs and based on the classical and generalized coupled thermoelasticity theories are shown and compared with each other. Several characteristics of thermoelastic waves are examined according to this analysis, and comparison between the behavior of classical and generalized coupled thermoelasticity theories in extended period of time is made to examine the damping effects of each theory.


Author(s):  
V. Derkach

The results of numerical studies of the degree of pinching of hollow-core precast slabs in the stone walls in the environment of the computing system ANSYS are presented. The numerical calculation of the junction of the floor slab joints with the bearing wall was carried out by the finite element method taking into account the contact interaction of the floor slabs with masonry. The theoretical values of the pinch point degree coefficient are compared with the results of physical studies of a fragment of reinforced concrete slab of prestressed multi-core hollow-core forged slabs with platform joints. The difference between the theoretical and experimental values of the degree of pinching did not exceed 12.5. Based on the numerical calculation, the dependences of the coefficient of the degree of pinching from the elastic modulus of the masonry guests and the magnitude of the compression stresses of the load-bearing walls, using which you can calculate the value of the reference bending moments arising in the floor slabs are obtained. It is shown that the coefficient of the degree of pinching K non-linearly increases with an increase in the elastic modulus of masonry bearing walls. In this case, the greatest influence on the values of K has a change in the modulus of elasticity in the range of 1200-6000 MPa. In the case of supporting the slabs on the walls, made of aerated concrete blocks through a monolithic reinforced concrete belt, the value of the coefficient K increases 1.5 times. It has been established that the degree of pinching depends nonlinearly on the level of compressive stresses at the contact of the plate with the wall. At high levels of compression equal to 1-2 MPa, which are characteristic of the walls of the lower floors of multi-storey buildings, the value of the degree of pinching is in the range of 0.65-0.81.Приведены результаты численных исследований коэффициента степени защемления многопустотных железобетонных плит в каменных стенах в среде вычислительного комплекса ANSYS . Численный расчет узла сопряжения плит перекрытия с несущей стеной выполнялся методом конечных элементов с учетом контактного взаимодействия плит перекрытия с каменной кладкой. Выполнено сопоставление теоретических значений коэффициента степени защемления с результатами физических исследований фрагмента железобетонного перекрытия из предварительно напряженных многопустотных плит безопалубочного формования с платформенными стыками. Разница теоретических и экспериментальных значений коэффициента степени защемления не превысила 12,5 . На основании численного расчета получены зависимости значений коэффициента степени защемления от модуля упругости каменной кладки и величины напряжений обжатия несущих стен, с помощью которых можно рассчитать величину опорных изгибающих моментов, возникающих в плитах перекрытия. Показано, что коэффициент степени защемления К нелинейно возрастает с увеличением модуля упругости каменной кладки несущих стен. При этом наибольшее влияние на значения К оказывает изменение модуля упругости в диапазоне 12006000 МПа. В случае опирания плит перекрытия на стены, выполненные из ячеистобетонных блоков, через монолитный железобетонный пояс значение коэффициента К возрастает в 1,5 раза. Установлено, что коэффициент степени защемления нелинейно зависит от уровня сжимающих напряжений по контакту плиты со стеной. При высоких уровнях обжатия, равных 12 МПа, которые характерны для стен нижних этажей многоэтажных зданий, значение коэффициента степени защемления находится в диапазоне 0,650,81.


2001 ◽  
Vol 4 (2) ◽  
pp. 67-78 ◽  
Author(s):  
Ana Alonso ◽  
Anahí Dello Russo ◽  
César Otero-Souto ◽  
Claudio Padra ◽  
Rodolfo Rodríguez

Sign in / Sign up

Export Citation Format

Share Document