scholarly journals Complementary Use of BG and EMR Formalisms for Multiphysics Systems Analysis and Control

Author(s):  
Zeineb Chikhaoui ◽  
Julien Gomand ◽  
François Malburet ◽  
Pierre-Jean Barre

In this paper, a complex multiphysics system is modeled using two different energy-based graphical techniques: Bond Graph and Energetic Macroscopic Representation. These formalisms can be used together to analyze, model and control a system. The BG is used to support physical, lumped-parameter modeling and analysis processes, and then EMR is used to facilitate definition of a control structure through inversion-based methodology. This complementarity between both of these tools is set out through a helicopter flight control subsystem.

2003 ◽  
Vol 15 (5) ◽  
pp. 546-554 ◽  
Author(s):  
Kensaku Hazawa ◽  
◽  
Jinok Shin ◽  
Daigo Fujiwara ◽  
Kazuhiro Igarashi ◽  
...  

We developed a small autonomous hobby-class unmanned helicopter that weighs about 9 kg, focusing on attitude and velocity models and controller design. Simge Input Single Output (SISO) transfer function models are derived from brief kinematical analysis and system identification for each of the helicopter dynamics of pitch, roll, yaw, and three direction velocities. We designed six separate controllers based on derived models using LQG and LQI control theory. The models and control structure are verified by experimental results. Accurate position control, namely, hover control and trajectory-following control, is achieved by a simple control algorithm using a designed attitude and velocity control structure. Robustness of the controller against wind was confirmed in a windy-day experiment. To verify robustness against the perturbation of physical helicopter parameters, the controller is applied to a larger helicopter.


2020 ◽  
Author(s):  
Isra Revenia

This article is made to know the destinantion and the administrasi functions of the school in order to assist the leader of an organazation in making decisions and doing the right thing, recording of such statements in addition to the information needs also pertains to the function of accountabilitty and control functions. Administrative administration is the activity of recording for everything that happens in the organization to be used as information for leaders. While the definition of administration is all processing activities that start from collecting (receiving), recording, processing, duplicating, minimizing and storing all the information of correspondence needed by the organization. Administration is as an activity to determine everything that happens in the organization, to be used as material for information by the leadership, which includes all activities ranging from manufacturing, managing, structuring to all the preparation of information needed by the organization.


1994 ◽  
Vol 30 (1) ◽  
pp. 167-175
Author(s):  
Alan H. Vicory ◽  
Peter A. Tennant

With the attainment of secondary treatment by virtually all municipal discharges in the United States, control of water pollution from combined sewer overflows (CSOs) has assumed a high priority. Accordingly, a national strategy was issued in 1989 which, in 1993, was expanded into a national policy on CSO control. The national policy establishes as an objective the attainment of receiving water quality standards, rather than a design storm/treatment technology based approach. A significant percentage of the CSOs in the U.S. are located along the Ohio River. The states along the Ohio have decided to coordinate their CSO control efforts through the Ohio River Valley Water Sanitation Commission (ORSANCO). With the Commission assigned the responsibility of developing a monitoring approach which would allow the definition of CSO impacts on the Ohio, research by the Commission found that very little information existed on the monitoring and assessment of large rivers for the determination of CSO impacts. It was therefore necessary to develop a strategy for coordinated efforts by the states, the CSO dischargers, and ORSANCO to identify and apply appropriate monitoring approaches. A workshop was held in June 1993 to receive input from a variety of experts. Taking into account this input, a strategy has been developed which sets forth certain approaches and concepts to be considered in assessing CSO impacts. In addition, the strategy calls for frequent sharing of findings in order that the data collection efforts by the several agencies can be mutually supportive and lead to technically sound answers regarding CSO impacts and control needs.


1996 ◽  
Vol 118 (3) ◽  
pp. 482-488 ◽  
Author(s):  
Sergio Bittanti ◽  
Fabrizio Lorito ◽  
Silvia Strada

In this paper, Linear Quadratic (LQ) optimal control concepts are applied for the active control of vibrations in helicopters. The study is based on an identified dynamic model of the rotor. The vibration effect is captured by suitably augmenting the state vector of the rotor model. Then, Kalman filtering concepts can be used to obtain a real-time estimate of the vibration, which is then fed back to form a suitable compensation signal. This design rationale is derived here starting from a rigorous problem position in an optimal control context. Among other things, this calls for a suitable definition of the performance index, of nonstandard type. The application of these ideas to a test helicopter, by means of computer simulations, shows good performances both in terms of disturbance rejection effectiveness and control effort limitation. The performance of the obtained controller is compared with the one achievable by the so called Higher Harmonic Control (HHC) approach, well known within the helicopter community.


Author(s):  
Mathias Stefan Roeser ◽  
Nicolas Fezans

AbstractA flight test campaign for system identification is a costly and time-consuming task. Models derived from wind tunnel experiments and CFD calculations must be validated and/or updated with flight data to match the real aircraft stability and control characteristics. Classical maneuvers for system identification are mostly one-surface-at-a-time inputs and need to be performed several times at each flight condition. Various methods for defining very rich multi-axis maneuvers, for instance based on multisine/sum of sines signals, already exist. A new design method based on the wavelet transform allowing the definition of multi-axis inputs in the time-frequency domain has been developed. The compact representation chosen allows the user to define fairly complex maneuvers with very few parameters. This method is demonstrated using simulated flight test data from a high-quality Airbus A320 dynamic model. System identification is then performed with this data, and the results show that aerodynamic parameters can still be accurately estimated from these fairly simple multi-axis maneuvers.


Sign in / Sign up

Export Citation Format

Share Document