Local Thermal Non-Equilibrium in Mixed Convection in Channels Partially Heated at Uniform Heat Flux Filled With a Porous Medium

Author(s):  
Bernardo Buonomo ◽  
Oronzio Manca ◽  
Paolo Mesolella ◽  
Sergio Nardini

A numerical analysis of mixed convection in a vertical channel filled with metal foam partially heated at uniform heat flux is studied numerically. Local thermal non-equilibrium and Brinkman-Forchheimer-extended Darcy model are assumed. Boussinesq approximation with constant thermophysical proprieties are considered. Results are carried out for an aluminium foam with 10 pore per inch (PPI) and ε=0.909, the fluid is air. Results, for different Reynolds numbers and geometrical aspect ratios, are given in terms of solid and fluid temperatures, at heated walls and inside the channel at several heights, velocity profile along the channel, local and average Nusselt numbers. Results show that diffusive effect resulted lower temperature values inside the solid and the fluid temperatures are higher in all considered cases. For heated channel with smaller aspect ratios, an average Nusselt number increase is found for solid and fluid phases.

1981 ◽  
Vol 103 (4) ◽  
pp. 667-672 ◽  
Author(s):  
K. H. Sun ◽  
R. B. Duffey ◽  
C. Lin

A thermal-hydraulic model has been developed for describing the phenomenon of hydrodynamically-controlled dryout, or the boil-off phenomenon, in a vertical channel with a spatially-averaged or uniform heat flux. The use of the drift flux correlation for the void fraction profile, along with mass and energy balances for the system, leads to a dimensionless closed-form solution for the predictions of two-phase mixture levels and collapsed liquid levels. The physical significance of the governing dimensionless parameters are discussed. Comparisons with data from single-tube experiments, a 3 × 3 rod bundle experiment, and the Three Mile Island nuclear power plant show good agreement.


2015 ◽  
Vol 7 (1) ◽  
pp. 292973 ◽  
Author(s):  
Oronzio Manca ◽  
Sergio Nardini ◽  
Daniele Ricci ◽  
Salvatore Tamburrino

Author(s):  
Bernardo Buonomo ◽  
Oronzio Manca ◽  
Sergio Nardini ◽  
Guy Lauriat

A numerical investigation on a single slot jet impinging in a porous parallel-plate channel containing an air-saturated high permeability porous medium is accomplished. The wall opposite the slot jet is partially heated at uniform heat flux and the buoyancy effects are taken into account. The fluid flow is assumed two dimensional, laminar and steady. The porous medium is modeled using the Brinkman–Forchheimer-extended Darcy model and the Boussinesq approximation. The local thermal non-equilibrium (LTNE) hypothesis is invoked. The results are discussed in terms of streamlines, fluid and solid phase temperature fields, wall temperature profiles and local and average Nusselt numbers. The porous medium allows a more significant heat transfer close to the end of the heated part of the plate. For low Peclet numbers, forced flow and natural convection are opposite and the mean Nusselt number shows a decrease in heat transfer, whereas they are aiding for high Peclet numbers. Porosity effects on the mean Nusselt numbers were found weak.


1999 ◽  
Vol 121 (2) ◽  
pp. 85-90 ◽  
Author(s):  
S. Dahl ◽  
J. Davidson

Nusselt numbers are measured in three counterflow tube-in-shell heat exchangers with flow rates and temperatures representative of thermosyphon operation in solar water heating systems. Mixed convection heat transfer correlations for these tube-in-shell heat exchangers were previously developed in Dahl and Davidson (1998) from data obtained in carefully controlled experiments with uniform heat flux at the tube walls. The data presented in this paper confirm that the uniform heat flux correlations apply under morerealistic conditions. Water flows in the shell and 50 percent ethylene glycol circulates in the tubes. Actual Nusselt numbers are within 15 percent of the values predicted for a constant heat flux boundary condition. The data reconfirm the importance of mixed convection in determining heat transfer rates. Under most operating conditions, natural convection heat transfer accounts for more than half of the total heat transfer rate.


Sign in / Sign up

Export Citation Format

Share Document