A Nondimensional Analysis of Boiling Dry a Vertical Channel with a Uniform Heat Flux

1981 ◽  
Vol 103 (4) ◽  
pp. 667-672 ◽  
Author(s):  
K. H. Sun ◽  
R. B. Duffey ◽  
C. Lin

A thermal-hydraulic model has been developed for describing the phenomenon of hydrodynamically-controlled dryout, or the boil-off phenomenon, in a vertical channel with a spatially-averaged or uniform heat flux. The use of the drift flux correlation for the void fraction profile, along with mass and energy balances for the system, leads to a dimensionless closed-form solution for the predictions of two-phase mixture levels and collapsed liquid levels. The physical significance of the governing dimensionless parameters are discussed. Comparisons with data from single-tube experiments, a 3 × 3 rod bundle experiment, and the Three Mile Island nuclear power plant show good agreement.


2019 ◽  
Vol 65 (17) ◽  
pp. 1741-1751
Author(s):  
Yani Lu ◽  
Li Zhao ◽  
Shuai Deng ◽  
Dongpeng Zhao ◽  
Xianhua Nie ◽  
...  


Author(s):  
Bernardo Buonomo ◽  
Oronzio Manca ◽  
Paolo Mesolella ◽  
Sergio Nardini

A numerical analysis of mixed convection in a vertical channel filled with metal foam partially heated at uniform heat flux is studied numerically. Local thermal non-equilibrium and Brinkman-Forchheimer-extended Darcy model are assumed. Boussinesq approximation with constant thermophysical proprieties are considered. Results are carried out for an aluminium foam with 10 pore per inch (PPI) and ε=0.909, the fluid is air. Results, for different Reynolds numbers and geometrical aspect ratios, are given in terms of solid and fluid temperatures, at heated walls and inside the channel at several heights, velocity profile along the channel, local and average Nusselt numbers. Results show that diffusive effect resulted lower temperature values inside the solid and the fluid temperatures are higher in all considered cases. For heated channel with smaller aspect ratios, an average Nusselt number increase is found for solid and fluid phases.



2021 ◽  
Vol 169 ◽  
pp. 107079
Author(s):  
Hui Tan ◽  
Pingan Du ◽  
Kuan Zong ◽  
Guangyao Meng ◽  
Xin Gao ◽  
...  


Author(s):  
Davood Toghraie ◽  
Ramin Mashayekhi ◽  
Hossein Arasteh ◽  
Salman Sheykhi ◽  
Mohammadreza Niknejadi ◽  
...  

Purpose This is a 3D numerical study of convective heat transfer through a micro concentric annulus governing non-uniform heat flux boundary conditions employing water-Al2O3 nanofluid. The nanofluid is modeled using two-phase mixture model, as it has a good agreement to experimental results. Design/methodology/approach Half of the inner pipe surface area of the annulus section of a double pipe heat exchanger is exposed to a constant heat flux which two models are considered to divide the exposing surface area to smaller ones considering the fact that in all cases half of the inner pipe surface area has to be exposed to the heat flux: in model (A), the exposing surface area is divided radially to two parts (A1), four parts (A2) and eight parts (A3) by covering the whole length of the annulus and in model (B) the exposing surface area is divided axially to two parts (B1), four parts (B2) and eight parts (B3) by covering half of the annulus radially. Findings The results reveal that model (B) leads to higher Nusselt numbers compared to model (A); however, at Reynolds number 10, model (A3) exceeds model (B3). The average Nusselt number is increased up to 142 and 83 per cent at models (A3) with Reynolds number 10 and model (B3) with Reynolds number 1000, respectively. Originality/value This paper is a two-phase investigation of water-Al2O3 nanofluid in a micro concentric annulus under non-uniform heat flux boundary conditions.



1974 ◽  
Vol 31 (1) ◽  
pp. 1-20 ◽  
Author(s):  
E.R. Rosal ◽  
J.O. Cermak ◽  
L.S. Tong ◽  
J.E. Casterline ◽  
S. Kokolis ◽  
...  


2008 ◽  
Vol 51 (15-16) ◽  
pp. 3906-3912 ◽  
Author(s):  
Assunta Andreozzi ◽  
Nicola Bianco ◽  
Oronzio Manca ◽  
Vincenzo Naso




Sign in / Sign up

Export Citation Format

Share Document