Fluidized Bed Steam Gasification of Solid Biomass: Analysis and Optimization of Plant Operation Using Process Simulation

Author(s):  
Tobias Pro¨ll ◽  
Reinhard Rauch ◽  
Christian Aichernig ◽  
Hermann Hofbauer

Fluidized bed steam gasification of solid biomass yields a high quality producer gas, which can be used for efficient combined heat and power production (CHP) and as an intermediate product for chemical syntheses. In order to study the behavior of an 8 MW (fuel power) CHP plant, which has been in successful operation since 2001, a comprehensive model library has been developed for the equation-oriented process simulation software IPSEpro. The models are validated with measured data from the commercial scale plant. Because every model is based on the conservation of mass and energy, the simulation also allows the validation of measured data. By solution of a system describing the entire process, which uses measured data as input, a reference case for actual plant operation can be defined. In a next step, the behavior of the plant is studied during variations of selected parameters. Therefore, a model of the gasification reactor, which is able to describe the behavior during parameter variation, is necessary. It can be shown that fuel water content and gasification temperature significantly influence the global plant performance. The simulation predicts the efficiency of the existing power plant in optimized operation. Finally, part load behavior is investigated and a performance map of the CHP plant is presented. The results show that CHP-concepts based on fluidized bed steam gasification can reach high electric efficiencies and high overall fuel utilization rates even at small plant capacities of 10 MW fuel power.

2017 ◽  
pp. 1584-1596
Author(s):  
Ravinder Singh ◽  
Helen Huiru Lou

Liquefaction of natural gas helps in transporting it over long distances by sea vessels. It is then regasified and transported through pipelines to the consumer. Due to large energy density of Liquefied Natural Gas (LNG), and associated flammability issues, the LNG terminal involves high risk. Consequently, safety is an important factor in the operation of LNG terminals. Although a substantial amount of time money and effort has been put in this area, there is always some possibility of improving the process so that less risk is involved. Rapid advancement in process simulation software like Aspen Plus and Aspen HYSYS, has led to the convenience of experimenting the various control methodologies on the computer offline from the actual plant operation, before they are implemented in real time. In this chapter, main hazards associated with LNG terminal operation will be highlighted. Further, recent advancements in research for safety enhancement and efficiency enhancement in the liquefaction and regasification processes will also be included.


Author(s):  
Tobias Pröll ◽  
Reinhard Rauch ◽  
Christian Aichernig ◽  
Hermann Hofbauer

The work focuses on a dual fluidized bed gasification technology that is successfully operated for combined heat and power production at a scale of 8 MWth in Guessing/Austria since 2002. The reactor concept consists of a circulating fluidized bed system with a steam-fluidized bubbling bed integrated into the solids return loop. Accompanying the operation of the commercial scale plant, parameter models have been developed and validated by comparison to measured data. As the models naturally fulfill mass and energy balances, the simulation also allows the validation of measurement data. The behaviour of the plant is studied by carrying out variations of selected parameters. Evaluation of different plant operation cases yields correlations between process variables. The solids circulation rate is shown versus riser exit velocity. Fuel water content and gasification temperature significantly influence global plant performance. Simulation predicts the efficiency of the existing power plant in optimized operation. Finally, part load behaviour is investigated and performance maps of the CHP plant are presented. High fuel water content at high gas engine load results in high gas velocities in the riser (erosion limit) and higher heat ratio in the produced energy. It is concluded that CHP-concepts based on fluidized bed steam gasification can reach high electric efficiencies and high overall fuel utilization rates even at small plant capacities of about 10 MWth.


Author(s):  
Ravinder Singh ◽  
Helen Huiru Lou

Liquefaction of natural gas helps in transporting it over long distances by sea vessels. It is then regasified and transported through pipelines to the consumer. Due to large energy density of Liquefied Natural Gas (LNG), and associated flammability issues, the LNG terminal involves high risk. Consequently, safety is an important factor in the operation of LNG terminals. Although a substantial amount of time money and effort has been put in this area, there is always some possibility of improving the process so that less risk is involved. Rapid advancement in process simulation software like Aspen Plus and Aspen HYSYS, has led to the convenience of experimenting the various control methodologies on the computer offline from the actual plant operation, before they are implemented in real time. In this chapter, main hazards associated with LNG terminal operation will be highlighted. Further, recent advancements in research for safety enhancement and efficiency enhancement in the liquefaction and regasification processes will also be included.


Author(s):  
Eric Liese

A dynamic process model of a steam turbine, including partial arc admission operation, is presented. Models were made for the first stage and last stage, with the middle stages presently assumed to have a constant pressure ratio and efficiency. A condenser model is also presented. The paper discusses the function and importance of the steam turbines entrance design and the first stage. The results for steam turbines with a partial arc entrance are shown, and compare well with experimental data available in the literature, in particular, the “valve loop” behavior as the steam flow rate is reduced. This is important to model correctly since it significantly influences the downstream state variables of the steam, and thus the characteristic of the entire steam turbine, e.g., state conditions at extractions, overall turbine flow, and condenser behavior. The importance of the last stage (the stage just upstream of the condenser) in determining the overall flowrate and exhaust conditions to the condenser is described and shown via results.


Sign in / Sign up

Export Citation Format

Share Document