Performance Evaluation of a Regenerative Blower for Hydrogen Recirculation Application in Fuel Cell Vehicles

Author(s):  
Young-Hoon Kim ◽  
Shin-Hyoung Kang

Regenerative blowers are used for hydrogen gas recirculation application in fuel cell vehicles. In this paper we discuss the performance of theoretical models that describe the complex three dimensional flows in regenerative blowers. A one-dimensional performance prediction code is developed based on theoretical models and loss models. Numerical calculation is also performed using a commercial CFD code to analyze the three dimensional flows in a regenerative blower. The results of numerical analysis are used to evaluate the performance of the designed blower and improve the accuracy of performance prediction by correcting the loss models. The results of performance predictions are compared with measured data of a prototype regenerative blower to validate the one-dimensional performance prediction method.

Author(s):  
E Swain

A one-dimensional centrifugal compressor performance prediction technique that has been available for some time is updated as a result of extracting the component performance from three-dimensional computational fluid dynamic (CFD) analyses. Confidence in the CFD results is provided by comparison of overall performance for one of the compressor examples. The extracted impeller characteristic is compared with the original impeller loss model, and this indicated that some improvement was desirable. The position of least impeller loss was determined using a traditional axial compressor cascade method, and suitable algebraic expressions were derived to match the CFD data. The merit of the approach lies with the relative ease that CFD component performance currently can be achieved and adjusting one-dimensional methods to agree with the CFD-derived models.


2008 ◽  
Vol 16 (03) ◽  
pp. 361-379 ◽  
Author(s):  
Z. L. JI

The one-dimensional analytical solutions are derived and three-dimensional substructure boundary element approaches are developed to predict and analyze the acoustic attenuation characteristics of straight-through perforated tube silencers and folded resonators without mean flow, as well as to examine the effect of nonplanar waves in the silencers and resonators on the acoustic attenuation performance. Comparisons of transmission loss predictions with the experimental results for prototype straight-through perforated tube silencers demonstrated that the three-dimensional approach is needed for accurate acoustic attenuation performance prediction at higher frequencies, while the simple one-dimensional theory is sufficient at lower frequencies. The BEM is then used to investigate the effects of geometrical parameters on the acoustic attenuation characteristics of straight-through perforated tube silencers and folded resonators in detail.


Author(s):  
Enrico Klausner ◽  
Uwe Gampe

The one-dimensional flow analysis along a mean streamline is an appropriate and established procedure for initial design and performance analysis of turbomachinery. One such method for performance analysis of centrifugal compressors was published by Aungier in the 1990s. The latest description of Aungier’s performance prediction model was applied to a set of centrifugal compressor stages published in literature. For each test case the whole performance map was calculated and compared with measurement data. The calculation results correspond well with measured data over a wide operating range. However, near choke or stall the mean streamline performance prediction deviates from measurements. After evaluation of this “standard” mean streamline model specific loss correlations, e.g. for choking, incidence and shock losses were replaced by theoretical models. The aim was to implement a more physical based loss model which is able to predict the performance of compressor stages outside the limits of the standard procedure. The modified procedure was again validated against measurements of the above mentioned compressor stages. The modified procedure gives a better prediction of operating performance and behavior. Shortcomings of the procedure are still the overestimation of vaneless diffuser losses at low mass flow rates and the uncertainty in prediction of choke limit. In conclusion recommendations for advancement of the one-dimensional performance analysis method are given.


Author(s):  
Shahram Ghasemi ◽  
Ebrahim Shirani ◽  
Ali Hajilouy-Benisi

In this paper, the performance of the twin-entry radial flow turbine under steady state and partial admission conditions is modeled. The method, which is developed here, is based on one-dimensional performance prediction. In one-dimensional modeling, the flow properties are assumed constant on a plane normal to the flow direction. This assumption is in contrast with the flow at the rotor entry of a twin-entry turbine under partial admission condition. In this study the one-dimensional performance prediction method for single-entry turbine is modified to analyze the twin-entry turbine. In particular, the loss coefficients due to friction, clearance and blade loading, which are already developed for single-entry turbines, are modified. Also additional losses in the rotor are considered because of twin-entry rotor inlet conditions and the rotor-mixing losses. Indeed in a single-entry turbine with symmetric volute the flow tends to move toward the shroud. A correlation for the radial velocity profile at the rotor entry for this case is obtained and is considered to be optimum. Then the rotor mixing loss is estimated. Finally a model based on the above mentioned matters is developed. The results obtained from the model are compared with experimental results and good agreements are obtained. In this paper, special behaviors of the flow in the twin-entry turbine are also investigated and some physical interpretations are presented.


2008 ◽  
Vol 67 (1) ◽  
pp. 51-60 ◽  
Author(s):  
Stefano Passini

The relation between authoritarianism and social dominance orientation was analyzed, with authoritarianism measured using a three-dimensional scale. The implicit multidimensional structure (authoritarian submission, conventionalism, authoritarian aggression) of Altemeyer’s (1981, 1988) conceptualization of authoritarianism is inconsistent with its one-dimensional methodological operationalization. The dimensionality of authoritarianism was investigated using confirmatory factor analysis in a sample of 713 university students. As hypothesized, the three-factor model fit the data significantly better than the one-factor model. Regression analyses revealed that only authoritarian aggression was related to social dominance orientation. That is, only intolerance of deviance was related to high social dominance, whereas submissiveness was not.


2011 ◽  
Vol 41 (11) ◽  
pp. 2155-2167 ◽  
Author(s):  
Xavier Sanchez ◽  
Elena Roget ◽  
Jesus Planella ◽  
Francesc Forcat

Abstract The theoretical models of Batchelor and Kraichnan, which account for the smallest scales of a scalar field passively advected by a turbulent fluid (Prandtl > 1), have been validated using shear and temperature profiles measured with a microstructure profiler in a lake. The value of the rate of dissipation of turbulent kinetic energy ɛ has been computed by fitting the shear spectra to the Panchev and Kesich theoretical model and the one-dimensional spectra of the temperature gradient, once ɛ is known, to the Batchelor and Kraichnan models and from it determining the value of the turbulent parameter q. The goodness of the fit between the spectra corresponding to these models and the measured data shows a very clear dependence on the degree of isotropy, which is estimated by the Cox number. The Kraichnan model adjusts better to the measured data than the Batchelor model, and the values of the turbulent parameter that better fit the experimental data are qB = 4.4 ± 0.8 and qK = 7.9 ± 2.5 for Batchelor and Kraichnan, respectively, when Cox ≥ 50. Once the turbulent parameter is fixed, a comparison of the value of ɛ determined from fitting the thermal gradient spectra to the value obtained after fitting the shear spectra shows that the Kraichnan model gives a very good estimate of the dissipation, which the Batchelor model underestimates.


2021 ◽  
Author(s):  
Daria Gladskikh ◽  
Evgeny Mortikov ◽  
Victor Stepanenko

<p>The study of thermodynamic and biochemical processes of inland water objects using one- and three-dimensional RANS numerical models was carried out both for idealized water bodies and using measurements data. The need to take into account seiche oscillations to correctly reproduce the deepening of the upper mixed layer in one-dimensional (vertical) models is demonstrated. We considered the one-dimensional LAKE model [1] and the three-dimensional model [2, 3, 4] developed at the Research Computing Center of Moscow State University on the basis of a hydrodynamic code combining DNS/LES/RANS approaches for calculating geophysical turbulent flows. The three-dimensional model was supplemented by the equations for calculating biochemical substances by analogy with the one-dimensional biochemistry equations used in the LAKE model. The effect of mixing processes on the distribution of concentration of greenhouse gases, in particular, methane and oxygen, was studied.</p><p>The work was supported by grants of the RF President’s Grant for Young Scientists (MK-1867.2020.5, MD-1850.2020.5) and by the RFBR (19-05-00249, 20-05-00776). </p><p>1. Stepanenko V., Mammarella I., Ojala A., Miettinen H., Lykosov V., Timo V. LAKE 2.0: a model for temperature, methane, carbon dioxide and oxygen dynamics in lakes // Geoscientific Model Development. 2016. V. 9(5). P. 1977–2006.<br>2. Mortikov E.V., Glazunov A.V., Lykosov V.N. Numerical study of plane Couette flow: turbulence statistics and the structure of pressure-strain correlations // Russian Journal of Numerical Analysis and Mathematical Modelling. 2019. 34(2). P. 119-132.<br>3. Mortikov, E.V. Numerical simulation of the motion of an ice keel in stratified flow // Izv. Atmos. Ocean. Phys. 2016. V. 52. P. 108-115.<br>4. Gladskikh D.S., Stepanenko V.M., Mortikov E.V. On the influence of the horizontal dimensions of inland waters on the thickness of the upper mixed layer // Water Resourses. 2021.V. 45, 9 pages. (in press) </p>


1981 ◽  
Vol 42 (19) ◽  
pp. 445-449 ◽  
Author(s):  
A. Fournel ◽  
C. More ◽  
G. Roger ◽  
J.P. Sorbier ◽  
J.M. Delrieu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document