Passive Scalar Turbulent Channel Flow at Pr=25: DNS-LES Approach

Author(s):  
Iztok Tiselj ◽  
Luka Sˇtrubelj

DNS-LES numerical simulations of a passive scalar field in the turbulent channel flow were performed at friction Reynolds number Re_Tau = 180 and Prandtl number Pr = 25. Direct numerical simulation is used for description of the velocity field. Temperature field is described with LES-like approach with the smallest resolved temperature scales equal to the smallest scales of the velocity field. The consistency of the applied physical modelling and pseudo-spectral scheme is tested with the grid refinement study (grid refine ∼3 times in each direction) and with comparison of the results with the existing DNS simulations of Schwertfirm and Manhart (2006) at the same conditions. The comparison shows that the proposed approach produces very accurate mean temperature profiles, heat transfer coefficients and other low-order moments of the turbulent thermal field. It is shown that the mean temperature profiles near the wall can be accurately predicted even when the temperature scales between the Batchelor and Kolmogorov scale are not resolved. The key to the success of the proposed approach lies in the fact that the large-scale structures govern the turbulent heat transfer at high Prandtl numbers, while the role of the sub-Kolmogorov temperature scales in the diffusive sublayer and the thermal buffer layer (y+<5) is practically negligible. The contribution of the sub-Kolmogorov thermal scales becomes relevant above the thermal buffer layer (y+>5), where the unresolved temperature scales affect spectra and RMS temperature fluctuations, but not the log-law shape of the mean temperature profile and the mean heat transfer coefficient.

2011 ◽  
Vol 678 ◽  
pp. 417-450 ◽  
Author(s):  
J. LEPORE ◽  
L. MYDLARSKI

The dispersion of a passive scalar (temperature) from a concentrated line source in fully developed, high-aspect-ratio turbulent channel flow is studied herein. The line source is oriented in the direction of the inhomogeneity of the velocity field, resulting in a thermal plume that is statistically three-dimensional. This configuration is selected to investigate the lateral dispersion of a passive scalar in an inhomogeneous turbulent flow (i.e. dispersion in planes parallel to the channel walls). Measurements are recorded at six wall-normal distances (y/h = 0.10, 0.17, 0.33, 0.50, 0.67 and 1.0), six downstream positions (x/h = 4.0, 7.4, 10.8, 15.2, 18.6 and 22.0) and a Reynolds number of Re ≡ 〈U〉y = hh/v = 10200 (Reτ ≡ u∗h/v = 502). The lateral mean temperature excess profiles were found to be well represented by Gaussian distributions. The root-mean-square (r.m.s.) profiles, on the other hand, were symmetric, but non-Gaussian. Consistent with homogeneous flows (and in contrast to the work of Lavertu & Mydlarski (J. Fluid Mech., vol. 528, 2005, p. 135) studying transverse dispersion in the same flow), (i) the downstream growth rate of the centreline mean temperature excess, centreline r.m.s. temperature fluctuation and half-width of the mean and r.m.s. temperature profiles followed a power law evolution in the downstream direction, and (ii) the r.m.s. profiles evolved from single-peaked to double-peaked profiles far downstream. By comparing the measured ratios of the centreline r.m.s. temperature fluctuation to the mean temperature excess to the ratios measured in other flows, it was hypothesized that the mean-flow shear, as well as the turbulence intensity, played an important, cooperative role in increasing the mixedness of the flow. The probability density functions (PDFs) were quasi-Gaussian near the wall as well as for large-enough downstream distances. Closer to both the source and the channel centreline, the PDFs were better approximated by exponential distributions, with a sharp peak corresponding to the free-stream temperature. For intermediate downstream distances, the PDFs of the lateral dispersion were better mixed than analogous PDFs of the transverse dispersion, consistent with the mixedness measurements.


2017 ◽  
Vol 830 ◽  
pp. 300-325 ◽  
Author(s):  
Hiroyuki Abe ◽  
Robert Anthony Antonia

Integration across a fully developed turbulent channel flow of the transport equations for the mean and turbulent parts of the scalar dissipation rate yields relatively simple relations for the bulk mean scalar and wall heat transfer coefficient. These relations are tested using direct numerical simulation datasets obtained with two isothermal boundary conditions (constant heat flux and constant heating source) and a molecular Prandtl number Pr of 0.71. A logarithmic dependence on the Kármán number $h^{+}$ is established for the integrated mean scalar in the range $h^{+}\geqslant 400$ where the mean part of the total scalar dissipation exhibits near constancy, whilst the integral of the turbulent scalar dissipation rate $\overline{\unicode[STIX]{x1D700}_{\unicode[STIX]{x1D703}}}$ increases logarithmically with $h^{+}$. This logarithmic dependence is similar to that established in a previous paper (Abe & Antonia, J. Fluid Mech., vol. 798, 2016, pp. 140–164) for the bulk mean velocity. However, the slope (2.18) for the integrated mean scalar is smaller than that (2.54) for the bulk mean velocity. The ratio of these two slopes is 0.85, which can be identified with the value of the turbulent Prandtl number in the overlap region. It is shown that the logarithmic $h^{+}$ increase of the integrated mean scalar is intrinsically associated with the overlap region of $\overline{\unicode[STIX]{x1D700}_{\unicode[STIX]{x1D703}}}$, established for $h^{+}$ (${\geqslant}400$). The resulting heat transfer law also holds at a smaller $h^{+}$ (${\geqslant}200$) than that derived by assuming a log law for the mean temperature.


Author(s):  
Kyoungyoun Kim ◽  
Radhakrishna Sureshkumar

A direct numerical simulation (DNS) of viscoelastic turbulent channel flow with the FENE-P model was carried out to investigate turbulent heat transfer mechanism of polymer drag-reduced flows. The configuration was a fully-developed turbulent channel flow with uniform heat flux imposed on both walls. The temperature was considered as a passive scalar. The Reynolds number based on the friction velocity (uτ) and channel half height (δ) is 125 and Prandtl number is 5. Consistently with the previous experimental observations, the present DNS results show that the heat-transfer coefficient was reduced at a rate faster than the accompanying drag reduction rate. Statistical quantities such as root-mean-square temperature fluctuations and turbulent heat fluxes were obtained and compared with those of a Newtonian fluid flow. Budget terms of the turbulent heat fluxes were also presented.


Author(s):  
Olalekan O. Shobayo ◽  
D. Keith Walters

Abstract Computational fluid dynamics (CFD) results for turbulent flow and heat transfer in a plane channel are presented. This study presents an idealized fully-developed planar channel flow case for which the mean velocity gradient is non-zero only in the wall-normal direction, and the mean temperature gradient is imposed to be uniform and non-zero in the streamwise or spanwise direction. Previous studies have documented direct numerical simulation results for periodic channel flow with mean temperature gradient in both the streamwise and wall-normal directions, but limited investigations exist documenting the effect of imposed spanwise gradient. The objective of this study is to evaluate turbulent heat flux predictions for three different classes of modeling approach: Reynolds-averaged Navier-Stokes (RANS), large-eddy simulation (LES), and hybrid RANS-LES. Results are compared to available DNS data at Prandtl number of 0.71 and Reynolds number of 180 based on friction velocity and channel half-width. Specific models evaluated include the k-ω SST RANS model, monotonically integrated LES (MILES), improved delayed detached eddy simulation (IDDES), and dynamic hybrid RANS-LES (DHRL). The DHRL model includes both the standard formulation that has been previously documented in the literature as well as a modified version developed specifically to improve predictive capability for flows in which the primary mean velocity and mean temperature gradients are not closely aligned. The modification consists of using separate RANS-to-LES blending parameters in the momentum and energy equations. Results are interrogated to evaluate the performance of the three different model types and specifically to evaluate the performance of the new modified DHRL variant compared with the baseline version.


2008 ◽  
Vol 130 (9) ◽  
Author(s):  
Abu Seena ◽  
Noor Afzal

Abstract The power law temperature distribution in a fully developed turbulent channel flow for large Peclet numbers has been proposed in the present work. The analysis of the power law velocity profile in a fully developed mean turbulent channel flow would be used for carrying out the analysis of the power law temperature profile. The Reynolds mean thermal energy equation in a fully developed mean turbulent channel flow has been analyzed. The mean turbulent thermal flow is divided in the inner and outer thermal layers that have been matched by Izakson–Millikan–Kolmogorov hypothesis to get the power law temperature profiles and the power law heat transfer law in the overlap region, in addition to traditional log laws for temperature profiles and heat transfer. It has been shown that the envelope of the heat transfer power law gives the heat transfer log law. Further, it is shown that the temperature power law index and prefactor are functions of the friction Peclet number, as well as function of an alternate variable, the nondimensional friction temperature. It is shown that for large Peclet numbers the power law temperature profile is equivalent to the log law temperature profile. The direct numerical simulation velocity profile data of fully developed turbulent flow provide good support for the power law temperature profile theory.


Mathematics ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 756
Author(s):  
Federico Lluesma-Rodríguez ◽  
Francisco Álcantara-Ávila ◽  
María Jezabel Pérez-Quiles ◽  
Sergio Hoyas

One numerical method was designed to solve the time-dependent, three-dimensional, incompressible Navier–Stokes equations in turbulent thermal channel flows. Its originality lies in the use of several well-known methods to discretize the problem and its parallel nature. Vorticy-Laplacian of velocity formulation has been used, so pressure has been removed from the system. Heat is modeled as a passive scalar. Any other quantity modeled as passive scalar can be very easily studied, including several of them at the same time. These methods have been successfully used for extensive direct numerical simulations of passive thermal flow for several boundary conditions.


1983 ◽  
Vol 105 (3) ◽  
pp. 592-597 ◽  
Author(s):  
A. Pignotti ◽  
G. O. Cordero

Computer generated graphs are presented for the mean temperature difference in typical air cooler configurations, covering the combinations of numbers of passes and rows per pass of industrial interest. Two sets of independent variables are included in the graphs: the conventional one (heat capacity water ratio and cold fluid effectiveness), and the one required in an optimization technique of widespread use (hot fluid effectiveness and the number of heat transfer units). Flow arrangements with side-by-side and over-and-under passes, frequently found in actual practice, are discussed through examples.


2013 ◽  
Vol 721 ◽  
pp. 541-577 ◽  
Author(s):  
Amin Rasam ◽  
Geert Brethouwer ◽  
Arne V. Johansson

AbstractIn Marstorpet al. (J. Fluid Mech., vol. 639, 2009, pp. 403–432), an explicit algebraic subgrid stress model (EASSM) for large-eddy simulation (LES) was proposed, which was shown to considerably improve LES predictions of rotating and non-rotating turbulent channel flow. In this paper, we extend that work and present a new explicit algebraic subgrid scalar flux model (EASSFM) for LES, based on the modelled transport equation of the subgrid-scale (SGS) scalar flux. The new model is derived using the same kind of methodology that leads to the explicit algebraic scalar flux model of Wikströmet al. (Phys. Fluids, vol. 12, 2000, pp. 688–702). The algebraic form is based on a weak equilibrium assumption and leads to a model that depends on the resolved strain-rate and rotation-rate tensors, the resolved scalar-gradient vector and, importantly, the SGS stress tensor. An accurate prediction of the SGS scalar flux is consequently strongly dependent on an accurate description of the SGS stresses. The new EASSFM is therefore primarily used in connection with the EASSM, since this model can accurately predict SGS stresses. The resulting SGS scalar flux is not necessarily aligned with the resolved scalar gradient, and the inherent dependence on the resolved rotation-rate tensor makes the model suitable for LES of rotating flow applications. The new EASSFM (together with the EASSM) is validated for the case of passive scalar transport in a fully developed turbulent channel flow with and without system rotation. LES results with the new model show good agreement with direct numerical simulation data for both cases. The new model predictions are also compared to those of the dynamic eddy diffusivity model (DEDM) and improvements are observed in the prediction of the resolved and SGS scalar quantities. In the non-rotating case, the model performance is studied at all relevant resolutions, showing that its predictions of the Nusselt number are much less dependent on the grid resolution and are more accurate. In channel flow with wall-normal rotation, where all the SGS stresses and fluxes are non-zero, the new model shows significant improvements over the DEDM predictions of the resolved and SGS quantities.


Sign in / Sign up

Export Citation Format

Share Document