Lateral dispersion from a concentrated line source in turbulent channel flow

2011 ◽  
Vol 678 ◽  
pp. 417-450 ◽  
Author(s):  
J. LEPORE ◽  
L. MYDLARSKI

The dispersion of a passive scalar (temperature) from a concentrated line source in fully developed, high-aspect-ratio turbulent channel flow is studied herein. The line source is oriented in the direction of the inhomogeneity of the velocity field, resulting in a thermal plume that is statistically three-dimensional. This configuration is selected to investigate the lateral dispersion of a passive scalar in an inhomogeneous turbulent flow (i.e. dispersion in planes parallel to the channel walls). Measurements are recorded at six wall-normal distances (y/h = 0.10, 0.17, 0.33, 0.50, 0.67 and 1.0), six downstream positions (x/h = 4.0, 7.4, 10.8, 15.2, 18.6 and 22.0) and a Reynolds number of Re ≡ 〈U〉y = hh/v = 10200 (Reτ ≡ u∗h/v = 502). The lateral mean temperature excess profiles were found to be well represented by Gaussian distributions. The root-mean-square (r.m.s.) profiles, on the other hand, were symmetric, but non-Gaussian. Consistent with homogeneous flows (and in contrast to the work of Lavertu & Mydlarski (J. Fluid Mech., vol. 528, 2005, p. 135) studying transverse dispersion in the same flow), (i) the downstream growth rate of the centreline mean temperature excess, centreline r.m.s. temperature fluctuation and half-width of the mean and r.m.s. temperature profiles followed a power law evolution in the downstream direction, and (ii) the r.m.s. profiles evolved from single-peaked to double-peaked profiles far downstream. By comparing the measured ratios of the centreline r.m.s. temperature fluctuation to the mean temperature excess to the ratios measured in other flows, it was hypothesized that the mean-flow shear, as well as the turbulence intensity, played an important, cooperative role in increasing the mixedness of the flow. The probability density functions (PDFs) were quasi-Gaussian near the wall as well as for large-enough downstream distances. Closer to both the source and the channel centreline, the PDFs were better approximated by exponential distributions, with a sharp peak corresponding to the free-stream temperature. For intermediate downstream distances, the PDFs of the lateral dispersion were better mixed than analogous PDFs of the transverse dispersion, consistent with the mixedness measurements.

Author(s):  
Iztok Tiselj ◽  
Luka Sˇtrubelj

DNS-LES numerical simulations of a passive scalar field in the turbulent channel flow were performed at friction Reynolds number Re_Tau = 180 and Prandtl number Pr = 25. Direct numerical simulation is used for description of the velocity field. Temperature field is described with LES-like approach with the smallest resolved temperature scales equal to the smallest scales of the velocity field. The consistency of the applied physical modelling and pseudo-spectral scheme is tested with the grid refinement study (grid refine ∼3 times in each direction) and with comparison of the results with the existing DNS simulations of Schwertfirm and Manhart (2006) at the same conditions. The comparison shows that the proposed approach produces very accurate mean temperature profiles, heat transfer coefficients and other low-order moments of the turbulent thermal field. It is shown that the mean temperature profiles near the wall can be accurately predicted even when the temperature scales between the Batchelor and Kolmogorov scale are not resolved. The key to the success of the proposed approach lies in the fact that the large-scale structures govern the turbulent heat transfer at high Prandtl numbers, while the role of the sub-Kolmogorov temperature scales in the diffusive sublayer and the thermal buffer layer (y+<5) is practically negligible. The contribution of the sub-Kolmogorov thermal scales becomes relevant above the thermal buffer layer (y+>5), where the unresolved temperature scales affect spectra and RMS temperature fluctuations, but not the log-law shape of the mean temperature profile and the mean heat transfer coefficient.


2013 ◽  
Vol 721 ◽  
pp. 541-577 ◽  
Author(s):  
Amin Rasam ◽  
Geert Brethouwer ◽  
Arne V. Johansson

AbstractIn Marstorpet al. (J. Fluid Mech., vol. 639, 2009, pp. 403–432), an explicit algebraic subgrid stress model (EASSM) for large-eddy simulation (LES) was proposed, which was shown to considerably improve LES predictions of rotating and non-rotating turbulent channel flow. In this paper, we extend that work and present a new explicit algebraic subgrid scalar flux model (EASSFM) for LES, based on the modelled transport equation of the subgrid-scale (SGS) scalar flux. The new model is derived using the same kind of methodology that leads to the explicit algebraic scalar flux model of Wikströmet al. (Phys. Fluids, vol. 12, 2000, pp. 688–702). The algebraic form is based on a weak equilibrium assumption and leads to a model that depends on the resolved strain-rate and rotation-rate tensors, the resolved scalar-gradient vector and, importantly, the SGS stress tensor. An accurate prediction of the SGS scalar flux is consequently strongly dependent on an accurate description of the SGS stresses. The new EASSFM is therefore primarily used in connection with the EASSM, since this model can accurately predict SGS stresses. The resulting SGS scalar flux is not necessarily aligned with the resolved scalar gradient, and the inherent dependence on the resolved rotation-rate tensor makes the model suitable for LES of rotating flow applications. The new EASSFM (together with the EASSM) is validated for the case of passive scalar transport in a fully developed turbulent channel flow with and without system rotation. LES results with the new model show good agreement with direct numerical simulation data for both cases. The new model predictions are also compared to those of the dynamic eddy diffusivity model (DEDM) and improvements are observed in the prediction of the resolved and SGS scalar quantities. In the non-rotating case, the model performance is studied at all relevant resolutions, showing that its predictions of the Nusselt number are much less dependent on the grid resolution and are more accurate. In channel flow with wall-normal rotation, where all the SGS stresses and fluxes are non-zero, the new model shows significant improvements over the DEDM predictions of the resolved and SGS quantities.


Author(s):  
Atsushi Sakurai ◽  
Koji Matsubara ◽  
Shigenao Maruyama

Importance of turbulence and radiation interaction (TRI) has been investigated in a turbulent channel flow by using direct numerical simulation (DNS) to clarify detailed turbulent flow structure and heat transfer mechanisms. To investigate the effect of correlation functions between gas absorption and temperature fluctuation, the two cases of correlation are tested. Consequently, the TRI effect can be clearly observed when the correlation is positive. This fact provides the evidence that radiative intensity is enhanced by the turbulent fluctuation. The DNS results suggest the significance in the fundamental aspect of TRI. Furthermore, effects of frictional Reynolds number, Reτ, are investigated. Comparing with the case of Reτ = 150, the location of the enhancement peaks of Reτ = 300 shifts toward the walls. It is found that the relative importance of the TRI correspond to the structure of temperature fluctuation intensity originated from the differences of the Reτ.


2017 ◽  
Vol 830 ◽  
pp. 300-325 ◽  
Author(s):  
Hiroyuki Abe ◽  
Robert Anthony Antonia

Integration across a fully developed turbulent channel flow of the transport equations for the mean and turbulent parts of the scalar dissipation rate yields relatively simple relations for the bulk mean scalar and wall heat transfer coefficient. These relations are tested using direct numerical simulation datasets obtained with two isothermal boundary conditions (constant heat flux and constant heating source) and a molecular Prandtl number Pr of 0.71. A logarithmic dependence on the Kármán number $h^{+}$ is established for the integrated mean scalar in the range $h^{+}\geqslant 400$ where the mean part of the total scalar dissipation exhibits near constancy, whilst the integral of the turbulent scalar dissipation rate $\overline{\unicode[STIX]{x1D700}_{\unicode[STIX]{x1D703}}}$ increases logarithmically with $h^{+}$. This logarithmic dependence is similar to that established in a previous paper (Abe & Antonia, J. Fluid Mech., vol. 798, 2016, pp. 140–164) for the bulk mean velocity. However, the slope (2.18) for the integrated mean scalar is smaller than that (2.54) for the bulk mean velocity. The ratio of these two slopes is 0.85, which can be identified with the value of the turbulent Prandtl number in the overlap region. It is shown that the logarithmic $h^{+}$ increase of the integrated mean scalar is intrinsically associated with the overlap region of $\overline{\unicode[STIX]{x1D700}_{\unicode[STIX]{x1D703}}}$, established for $h^{+}$ (${\geqslant}400$). The resulting heat transfer law also holds at a smaller $h^{+}$ (${\geqslant}200$) than that derived by assuming a log law for the mean temperature.


Author(s):  
Kyoungyoun Kim ◽  
Radhakrishna Sureshkumar

A direct numerical simulation (DNS) of viscoelastic turbulent channel flow with the FENE-P model was carried out to investigate turbulent heat transfer mechanism of polymer drag-reduced flows. The configuration was a fully-developed turbulent channel flow with uniform heat flux imposed on both walls. The temperature was considered as a passive scalar. The Reynolds number based on the friction velocity (uτ) and channel half height (δ) is 125 and Prandtl number is 5. Consistently with the previous experimental observations, the present DNS results show that the heat-transfer coefficient was reduced at a rate faster than the accompanying drag reduction rate. Statistical quantities such as root-mean-square temperature fluctuations and turbulent heat fluxes were obtained and compared with those of a Newtonian fluid flow. Budget terms of the turbulent heat fluxes were also presented.


Author(s):  
T. Houra ◽  
Y. Nagano ◽  
M. Tagawa

We measure flow and thermal fields over a locally heated two-dimensional hill. The heated sections on the wall are divided into upstream and downstream portions of the hill model. These sections are heated independently, yielding various thermal boundary conditions in contrast to the uniformly heated case. In the separated region formed behind the hill, it is found that the mean temperature profiles in the uniformly heated case are well decomposed into the separately heated cases. This is because the velocity fluctuation produced by the shear layer formed behind the hill is large, so the superposition of a passive scalar in the thermal field can be successfully realized. The rapid increase in the mean temperature near the uniformly heated wall should be due to the heat transfer near the leeward slope of the hill. On the other hand, the mean temperature distributions away from the wall are strongly affected by the turbulent thermal diffusion on the windward side of the hill.


1992 ◽  
Vol 114 (3) ◽  
pp. 598-606 ◽  
Author(s):  
N. Kasagi ◽  
Y. Tomita ◽  
A. Kuroda

A direct numerical simulation (DNS) of the fully developed thermal field in a two-dimensional turbulent channel flow of air was carried out. The isoflux condition was imposed on the two walls so that the local mean temperature increased linearly in the streamwise direction. With any buoyancy effect neglected, temperature was considered as a passive scalar. The computation was executed on 1,589,248 grid points by using a spectral method. The statistics obtained were root-mean-square temperature fluctuations, turbulent heat fluxes, turbulent Prandtl number, and dissipation time scales. They agreed fairly well with existing experimental and numerical simulation data. Each term in the budget equations of temperature variance, its dissipation rate, and turbulent heat fluxes was also calculated. It was found that the temperature fluctuation θ′ was closely correlated with the streamwise velocity fluctuation u′, particularly in the near-wall region. Hence, the distribution of budget terms for the streamwise and wall-normal heat fluxes, u′θ′ and v′θ′, were very similar to those for the two Reynolds stress components, u′u′ and u′v′.


Sign in / Sign up

Export Citation Format

Share Document