Aerodynamic Analysis of the Helicopter Rotor Using the Time-Domain Panel Method

2009 ◽  
Author(s):  
Seawook Lee ◽  
Leesang Cho ◽  
Hyunmin Choi ◽  
Jinsoo Cho

Recently, aerodynamic analysis of the helicopter rotor using computational fluid dynamics (CFD) is widely carried out with high accuracy. But, it is very long time to calculate aerodynamic performances and it is difficult to simulate the wake shape of the helicopter rotor using CFD analysis. In this research the time-domain panel method, which uses a numerical technique based on the piecewise constant source and doublet singularities, is applied to the analysis and prediction of the unsteady aerodynamic characteristics of helicopter rotor in a potential flow. And the free wake model is used for wake simulation. The results of present method are compared with the results of experiment of a helicopter rotor in hover and in forward flight. Results show good agreement with the experimental results.

2001 ◽  
Vol 38 (A) ◽  
pp. 274-288 ◽  
Author(s):  
Xiaogu Zheng ◽  
James Renwick

The advantages and limitations of frequency domain and time domain methods for estimating the interannual variability arising from day-to-day weather events are summarized. A modification of the time domain method is developed and its application in examining a precondition for the frequency domain method is demonstrated. A combined estimation procedure is proposed: it takes advantage of the strengths of both methods. The estimation procedures are tested with sets of synthetic data and are applied to long time series of three meteorological parameters. The impacts of the different methods on tests of potential long-range predictability for seasonal means are also discussed.


Author(s):  
Yan Wei Wu

Abstract Offshore wind system encountered wind, wave, current, soil, and other environmental loads. The support structure is randomly loaded for a long time, which is more likely to cause fatigue damage. In this paper, the NREL 5MW wind turbine and OC4 jacket support structure is selected to perform the time domain fatigue analysis. Commercial software Bladed and SACS are used to perform the required structural responses and fatigue strength calculations. The Stress Concentration Factors (SCF) and S-N curves for the stress calculations of tubular joints are adopted based on the recommendation of DNV GL guidelines. The magnitude of the stress variation range and the corresponding number of counts are obtained by using the rain-flow counting algorithm. Finally, the Palmgren-Miner’s rule is adopted to calculate the cumulative damage ratio and the fatigue life can then be estimated. Fatigue damage ratio and structural fatigue life of each joint during 20 years of operation period are evaluated.


2010 ◽  
Vol 8 ◽  
pp. 13-18 ◽  
Author(s):  
N. Fichtner ◽  
P. Russer

Abstract. A hybrid numerical technique combining time-domain integral equations (TD-IE) with the transmission line matrix (TLM) method is presented for the efficient modeling of transient wave phenomena. This hybrid method allows the full-wave modeling of circuits in the time-domain as well as the electromagnetic coupling of remote TLM subdomains using integral equations (IE). By using the integral equations the space between the TLM subdomains is not discretized and consequently doesn't contribute to the computational effort. The cost for the evaluation of the time-domain integral equations (TD-IE) is further reduced using a suitable plane-wave representation of the source terms. The hybrid TD-IE/TLM method is applied in the computation of the shielding effectiveness (SE) of metallic enclosures.


Sensors ◽  
2020 ◽  
Vol 20 (22) ◽  
pp. 6700
Author(s):  
Sangjin Byun

Time domain complementary metal-oxide-semiconductor (CMOS) temperature sensors estimate the temperature of a sensory device by measuring the frequency, period and/or delay time instead of the voltage and/or current signals that have been traditionally measured for a long time. In this paper, the time domain CMOS temperature sensors are categorized into twelve types by using the temperature estimation function which is newly defined as the ratio of two measured time domain signals. The categorized time domain CMOS temperature sensors, which have been published in literature, show different characteristics respectively in terms of temperature conversion rate, die area, process variation compensation, temperature error, power supply voltage sensitivity and so on. Based on their characteristics, we can choose the most appropriate one from twelve types to satisfy a given specification.


2011 ◽  
Vol 7 (S285) ◽  
pp. 249-254
Author(s):  
David Schade

AbstractThe workshop on Data Management issues for Time-Domain Astronomy was conceived as a forward-looking discussion of the primary issues that need to be addressed for science in the time domain. The very broad diversity of the science areas presented in the main Symposium made it clear that most of the general issues for astronomy data management—for example, large data volumes, the need for timely processing and network performance—would be pertinent in the time domain. In addition, there might be other tight time constraints on data processing when the output was required to trigger rapid follow-up observations, while science based on very long time-baselines might require careful consideration of long-term data preservation and availability issues. But broadly speaking, data management challenges in the time domain are not at variance to any significant degree with those for astronomy or data-intensive research in general. The workshop framed and debated a number of questions: What is the biggest challenge faced by future projects? How do grid and cloud computing figure in data management plans? Is the Virtual Observatory important to future projects? How are the issues of data life cycle being addressed?


Aviation ◽  
2020 ◽  
Vol 24 (4) ◽  
pp. 149-156
Author(s):  
Yuri Ignatkin ◽  
Pavel Makeev ◽  
Sergey Konstantinov ◽  
Alexander Shomov

The presented work is dedicated to the numerical study of the aerodynamic characteristics of the helicopter rotor. Two approaches to modeling of the rotor are applied: the free wake model developed by the Authors with using steady airfoil characteristics and the Unsteady RANS method based on the Ansys Fluent software. The modes of hovering and horizontal flight in the range of advancing ratio μ = (0-0.45) are considered. The shapes of the rotor wake, the distributions of the normal force coefficient and the fields of inductive velocities for all considered flight modes are calculated. For a particular case with μ = 0.25 there is a comparison with experimental data. The time needed for calculation of the applied methods is estimated. Accuracy of the used methods in the framework of the solved task is analysed with taking into account used models assumptions. It is shown that in the range of μ = (0-0.25) the free wake model provides a fast and reliable calculation of the aerodynamic characteristics of the helicopter rotor. For values of μ > 0.35 it is necessary to take into account the unsteady characteristics of the airfoil.


2001 ◽  
Vol 38 (A) ◽  
pp. 274-288
Author(s):  
Xiaogu Zheng ◽  
James Renwick

The advantages and limitations of frequency domain and time domain methods for estimating the interannual variability arising from day-to-day weather events are summarized. A modification of the time domain method is developed and its application in examining a precondition for the frequency domain method is demonstrated. A combined estimation procedure is proposed: it takes advantage of the strengths of both methods. The estimation procedures are tested with sets of synthetic data and are applied to long time series of three meteorological parameters. The impacts of the different methods on tests of potential long-range predictability for seasonal means are also discussed.


Sign in / Sign up

Export Citation Format

Share Document