scholarly journals Characterizing Jetting in an Acoustic Fluidized Bed Using X-Ray Computed Tomography

Author(s):  
David R. Escudero ◽  
Theodore J. Heindel

Understanding the jetting phenomena near the gas distributor plate in a fluidized bed is important to gas-solids mixing, heat and mass transfer, and erosion on any bed internals, which can all affect the performance of the bed. Moreover, acoustic vibration in a fluidized bed can be used to enhance the fluidization quality of particulate matter. Characterizing the jetting structure using X-ray computed tomography in a 3D fluidized bed, with and without acoustic intervention, is completed in this study. A 10.2 cm ID fluidized bed filled with glass beads, with material density of 2500 kg/m3 and particles sizes ranging between 212–600 μm, is used in these experiments. X-ray computed tomography (CT) imaging is used to determine local time-average gas holdup. From this information, qualitative characteristics of the hydrodynamic structure of the multiphase flow system are determined. Local time-average gas holdup images of the fluidized bed under acoustic intervention at a high superficial gas velocity show that jets produced near the aeration plate merge with other jets at a higher axial position of the bed compared to the no acoustic condition. Acoustic fluidized beds also have a fewer number of active jets than the no acoustic fluidized bed, which allowed for a more homogeneous gas holdup region deep into the bed. Hence, the acoustic presence has a significant effect on the jetting phenomena near the distributor plate of the fluidized bed.

2015 ◽  
Vol 138 (4) ◽  
Author(s):  
David R. Escudero ◽  
Theodore J. Heindel

Understanding the jetting phenomena near the gas distributor plate in a fluidized bed is important to gas–solid mixing, heat and mass transfer, and erosion to any bed internals, which can all affect the performance of the bed. Moreover, acoustic vibration in a fluidized bed can be used to enhance the fluidization quality of the particulate matter and influence the jetting behavior. Characterizing the jetting structure using X-ray computed tomography (CT) in a three-dimensional (3D) fluidized bed, with and without acoustic intervention, is the focus of this study. A 10.2 cm ID fluidized bed filled with glass beads and ground walnut shell, with material densities of 2500 kg/m3 and 1440 kg/m3, respectively, and particle sizes ranging between 212 and 600 μm, is used in these experiments. X-ray CT imaging is used to determine local time-average gas holdup. From this information, qualitative and quantitative characteristics of the hydrodynamic structure of the multiphase flow system are determined. Local time-average gas holdup images of the fluidized bed under acoustic intervention at a high superficial gas velocity show that jets produced near the aeration plate merge with other jets at a higher axial position of the bed compared to the no acoustic condition. Acoustic fluidized beds also have a fewer number of active jets than the no acoustic fluidized bed, which allowed for a more homogeneous gas holdup region deep in the bed. Hence, the acoustic presence has a significant effect on the jetting phenomena near the aeration plate in a fluidized bed.


2012 ◽  
Vol 134 (8) ◽  
Author(s):  
Joshua B. Drake ◽  
Theodore J. Heindel

Fluidized beds are common equipment in many process industries. Knowledge of the hydrodynamics within a fluidized bed on the local scale is important for the improvement of scale-up and process efficiencies. This knowledge is lacking due to limited observational technologies at the local scale. This paper uses X-ray computed tomography (CT) imaging to describe the local time-average gas holdup differences of annular hydrodynamic structures that arise through axisymmetric annular flow in a 10.2 cm and 15.2 cm diameter cold flow fluidized bed. The aeration scheme used is similar to that provided by a porous plate and hydrodynamic results can be directly compared. Geldart type B glass bead, ground walnut shell, and crushed corncob particles were studied at various superficial gas velocities. Assuming axisymmetry, the local 3D time-average gas holdup data acquired through X-ray CT imaging was averaged over concentric annuli, resulting in a 2D annular and time-average gas holdup map. These gas holdup maps show that four different types of annular hydrodynamic structures occur in the fluidized beds of this study: zones of (1) aeration jetting, (2) bubble coalescence, (3) bubble rise, and (4) particle shear. Changes in the superficial gas velocities, bed diameters, and bed material densities display changes in these zones. The 2D gas holdup maps provide a benchmark that can be used by computational fluid dynamic (CFD) users for the direct comparisons of 2D models, assuming axisymmetric annular flow.


Author(s):  
Joshua B. Drake ◽  
Theodore J. Heindel

Characterizing the hydrodynamics in fluidized beds is important to many processes from producing biofuels to coating pharmaceuticals. X-ray computed tomography (CT) can quantify local time-averaged phase fractions in multiphase systems that are highly dynamic, like fluidized beds. This paper describes the calibration methods used to produced CT images of a 15.24 cm diameter fluidized bed, how in-house software used these CTs to calculate gas holdup, and how well multiple CTs of a dynamic fluidized bed produced repeatable results while varying bed material and superficial gas velocities. It was concluded there is a very high degree of repeatability using the calibration methods and in-house software developed.


Author(s):  
David R. Escudero ◽  
Theodore J. Heindel

Fluidized bed reactors are important assets of many industrial applications because they provide uniform temperature distributions, low pressure drops, and high heat/mass rates. Characterizing the hydrodynamics of a fluidized bed is important to better understand the behavior of these multiphase flow systems. The hydrodynamic behavior in a cold flow 3D fluidized bed, with and without acoustic intervention, using X-ray computed tomography is investigated in this study. Experiments are carried out in a 10.2 cm ID fluidized bed filled with glass beads, with material density of 2600 kg/m3 and particle size ranges between 212–600 μm. In this study, three different bed height-to-diameter ratios are examined: H/D = 0.5, 1 and 1.5. Moreover, the sound frequency of the loudspeaker used as the acoustic source is fixed at 150 Hz with a sound pressure level of 120 dB. Local time-average gas holdup results show that the fluidized bed under the presence of an acoustic field provides a more uniform fluidization, the bed exhibits less channeling, and the jetting phenomena produced by the distributor plate is less prominent when compared to no acoustic field. Thus, acoustic intervention affects the hydrodynamic behavior of the fluidized bed.


1999 ◽  
Vol 11 (1) ◽  
pp. 199-211
Author(s):  
J. M. Winter ◽  
R. E. Green ◽  
A. M. Waters ◽  
W. H. Green

Sign in / Sign up

Export Citation Format

Share Document