Chaotic Heat Transfer in a Laminar Pulsating Flow With Constant Wall Temperature

Author(s):  
Mohammad Karami ◽  
Mojtaba Jarrahi ◽  
Zahra Habibi ◽  
Ebrahim Shirani ◽  
Hassan Peerhossaini

The correlation between heat transfer enhancement and secondary flow structures in laminar flows through a chaotic heat exchanger is discussed. The geometry consists of three bends; the angle between curvature planes of successive bends is 90°. Numerical simulations are performed for both steady and pulsating flows when the walls are subjected to a constant temperature. The temperature profiles and secondary flow patterns at the exit of bends are compared in order to characterize the flow. Simulations are carried out for the Reynolds numbers range 300≤Re≤800, velocity amplitude ratios (the ratio of the peak oscillatory velocity component to the mean flow velocity) 1≤β≤2.5, and wall temperatures 310 ≤ Tw(K) ≤ 360. The results show that in the steady flow, heat transfer enhancement occurs with increasing Reynolds number and wall temperature. However, heating homogenization becomes almost independent of Reynolds number when homoclinic connections exist in the flow. Moreover, at high values of wall temperature, heat transfer enhancement is greater than mixing improvement due to the presence of homoclinic connections. In the pulsating flow, Nusselt number improves with β, and β≥2 is a sufficient condition for heat transfer enhancement. The formation and development of homoclinic connections are correlated with the heating homogenization.

2012 ◽  
Vol 516-517 ◽  
pp. 249-252 ◽  
Author(s):  
Bing Chang Yang ◽  
Dong Xu Jin

Heat transfer enhancement by pulsating flow in a triangular grooved channel has been experimentally investigated. Effects of Reynolds number Re, Strouhal number St, pulsation amplitude A on the heat transfer enhancement were studied. The experimental results show that, the pulsating flow can significantly enhance heat transfer compared to the steady flow case, for instance, an enhancement of 115% is achieved at Re=400, A=0.5 and St=0.3. There exists an optimal Strouhal number corresponding to the maximum heat transfer enhancement factor. The heat transfer enhancement factor increases with the increase of Reynolds number and pulsation amplitude.


2021 ◽  
Vol 2116 (1) ◽  
pp. 012031
Author(s):  
P Kumavat ◽  
S M O’Shaughnessy

Abstract The increasing power density requirements of next generation high performance electronic devices has resulted in ever-increasing heat flux densities which necessitates the evolution of new liquid-based heat exchange technologies. Pulsating flow in single-phase cooling systems is viewed as a potential solution. In this study, an experimental analysis of thermally developed pulsating flow in a rectangular minichannel is conducted. The channel test setup involves a heated bottom section approximated as a constant heat flux boundary. Asymmetric sinusoidal pulsating flows with a fixed flow rate amplitude ratio of 0.9 and Womersley numbers (Wo) of 0.51 and 1.6 are investigated. The wall temperature profiles are recorded using infrared thermography. It is observed that the transverse wall temperature profile is influenced by the sudden velocity variations of such characteristic waveforms. A heat transfer enhancement of 6% was determined for asymmetric flow pulsations of Wo > 1 over the steady flow with a potential augmentation for higher flow rate amplitudes.


Author(s):  
W. M. Adrugi ◽  
Y. S. Muzychka ◽  
K. Pope

In this paper, heat transfer enhancement using liquid-liquid Taylor flow is examined. The experiments are conducted in mini-scale tubes with constant wall temperature. The segmented flow is created using several fractions of low viscosity silicone oil (1 cSt) and water for a wide range of flow rates and segment lengths. The variety of liquids and flow rates change the Prandtl, Reynolds, and capillary numbers. The dimensionless mean wall flux and the dimensionless thermal flow length are used to analyze the experimental heat transfer data. The comparison shows the heat transfer rate for Taylor flow is higher than in single-phase flow. The heat transfer enhancement occurs due to internal circulation in the fluid segments.


2017 ◽  
Vol 139 (2) ◽  
Author(s):  
Wesam Adrugi ◽  
Yuri Muzychka ◽  
Kevin Pope

In this paper, heat transfer enhancement using liquid–liquid Taylor flow in miniscale curved tubing for isothermal boundary conditions is examined. Copper tubing with an inner tube diameter of D = 1.65 mm and different radii of curvature and lengths is used in the experiments. Taylor flow is created using water and low-viscosity silicone oils (0.65 cS, 1 cS, and 3 cS) to examine the effect of Prandtl number on heat transfer rates in curved tubing. A series of experiments are conducted using tubing with constant length and variable curvature as well as variable length and constant curvature. The experimental results are compared with models for liquid–liquid Taylor flow in straight tubing and single-phase flow in curved tubes. The results of the research highlight the effects of liquid–liquid Taylor flow in curved tubing. This research provides new insights into the effect of curvature on heat transfer enhancement for liquid–liquid Taylor flow in miniscale curved tubing, at a constant wall temperature.


Author(s):  
W. M. Adrugi ◽  
Y. S. Muzychka ◽  
K. Pope

In this paper, heat transfer enhancement using liquid-liquid Taylor flow in mini scale curved tubing for isothermal boundary conditions is examined. The copper tubing has an inner tube diameter of Di = 1.65 mm with different radii of curvature and lengths. Taylor flow is created using water and low viscosity silicone oils (0.65 cSt, 1 cSt, 3 cSt) to examine the effect of Prandtl number on heat transfer rates in curved tubing. A series of experiments are conducted using tubing with constant length and variable curvature, as well as variable length and constant curvature. The experimental results are compared with models for liquid-liquid Taylor flow in straight tubing and single-phase flow in curved tubes. The results of the research develop a new model for liquid-liquid Taylor flow in curved tubing. This research provides new insights into the effect of curvature on heat transfer enhancement for liquid-liquid Taylor flow in mini scale curved tubing, at a constant wall temperature.


Energies ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3723
Author(s):  
Barah Ahn ◽  
Vikram C. Patil ◽  
Paul I. Ro

Heat transfer enhancement techniques used in liquid piston gas compression can contribute to improving the efficiency of compressed air energy storage systems by achieving a near-isothermal compression process. This work examines the effectiveness of a simultaneous use of two proven heat transfer enhancement techniques, metal wire mesh inserts and spray injection methods, in liquid piston gas compression. By varying the dimension of the inserts and the pressure of the spray, a comparative study was performed to explore the plausibility of additional improvement. The addition of an insert can help abating the temperature rise when the insert does not take much space or when the spray flowrate is low. At higher pressure, however, the addition of spacious inserts can lead to less efficient temperature abatement. This is because inserts can distract the free-fall of droplets and hinder their speed. In order to analytically account for the compromised cooling effects of droplets, Reynolds number, Nusselt number, and heat transfer coefficients of droplets are estimated under the test conditions. Reynolds number of a free-falling droplet can be more than 1000 times that of a stationary droplet, which results in 3.95 to 4.22 times differences in heat transfer coefficients.


Sign in / Sign up

Export Citation Format

Share Document