Numerical Simulation of Dielectrophoretic Particle Separation

Author(s):  
B. Kazemi ◽  
J. Darabi

This study presents the numerical simulation and optimization of a dielectrophoretic bio-separation chip for isolating bioparticles such as circulating tumor cells (CTCs). The chip consists of ten pairs of electrodes placed with an angle of 10° with respect to the direction of the flow on the top and bottom walls of the channel. The spatially non-uniform electric field produced by the slanted electrodes applies a repulsive force on the particles that are flowing through the channel. The repulsive force applied by the top and bottom electrodes are balanced and the particles flow along the centerline of the channel. On the other hand, the magnitude of forces resulted from electric field in the x and z-directions deflects particles depending on their size and guides them towards different outlets. Numerical simulation of the particle-fluid transport was performed using an open-source software named OpenFOAM and the deflection of the particles within the microfluidic channel was predicted. The present computational domain considers the dominant forces such as dielectrophoretic and hydrodynamic forces as well as their effects on the design and operating parameters of the chip. The results show that this device is capable of separating various cells based on their size.

Author(s):  
Barbaros C¸etin ◽  
Dongqing Li

In this paper, we are presenting the numerical simulation of a novel, simple microfluidic device for continuous separation of the particles according to their size. The device is composed of a straight rectangular channel connecting two inlet reservoirs to two exit reservoirs. Two asymmetric, straight, 3D electrodes are embedded inside the channel along the wall to create a non-uniform electric field for the DEP separation. The separated particles are collected at the different exit reservoirs. Main flow is induced by the pressure difference between the inlet and the exit reservoirs. The region affected by the electric field gradient is confined within the vicinity of the electrodes. Therefore, the undesired effects of the electric field on the system are minimized.


2003 ◽  
Vol 785 ◽  
Author(s):  
Dong-Kyun Lee ◽  
Ji-Won Choi ◽  
Deuk-Young Han ◽  
Hyun-Jai Kim ◽  
Seok-Jin Yoon

ABSTRACTThe internal stress distribution in multilayer actuator was analyzed by a numerical simulation. Around the edge of conventional inter-digital electrodes, the non-uniform electric field generated the stress concentration, which caused the ceramic to crack. Various electrode configurations were presented to decrease this stress concentration. Especially the float electrode type is a promising design because this can be fabricated using almost the same process as the conventional multilayer actuator, and the simulated results indicted that the float electrode type decreased the stress concentration of inter-digital type in approximately 1/3.


Author(s):  
Zhenqian Chen ◽  
Mingheng Shi

Dielectrophoresis (DEP) based on the processes of particle separation and particle detection in micro-channel is one of the most important operations required for many lab-on-a-chip devices. To understand the mechanism of the DEP, a theoretical analysis of dielectrophoretic separation motion of a spherical particle in a rectangular micro-channel filled with an aqueous electrolyte solution is presented in this paper. The dimensions of micro-channel are 100 μm in width and 200 μm in length. In this study, driven forces on the particle are analyzed in detail. At the gravitational direction, it is assumed that the density of the spherical particle is higher than that of the solution, and thus the gravitational effect is considered coupled with the buoyancy force and the electric double layer interaction force as well as the van der Waals force. Both the DEP force and the viscous friction force drive the particle separation motion from the solution in micro-channel. The particle separation distance of the particle from the bottom wall by the action of these forces and its motion behavior are analyzed and calculated. The DEP motion along the channel in an applied non-uniform electric field is simulated. Effects of particle’s size, electrolyte solution concentration and applied electric field strength on the DEP motion are discussed.


2006 ◽  
Vol 64 (7-9) ◽  
pp. 562-568 ◽  
Author(s):  
Adel M. Benselama ◽  
Jean-Luc Achard ◽  
Pascale Pham

Author(s):  
Ye Ai ◽  
Sang W. Joo ◽  
Sheng Liu ◽  
Shizhi Qian

DC dielectrophoretic (DEP) separation of particles through a constricted microchannel was numerically investigated by a verified multiphysics finite element model, composed of the Navier-Stokes equations for the flow field and the Laplace equation for the electric field solved in an arbitrary Lagrangian-Eulerian (ALE) framework. The particle-fluid-electric field interactions are fully taken into account in the present model. The numerical predictions are in qualitative agreement with the existing experimental results obtained from the literature. The DEP particle separation depends on the particle size and zeta potential. The separation threshold of the particle size can be controlled by adjusting the applied electric field and the constriction ratio of the microfluidic channel. The proposed numerical model can be utilized for the design and optimization of a real microfluidic device for DEP particle separation.


Sign in / Sign up

Export Citation Format

Share Document