Direct Numerical Simulation of Particle Separation by Direct Current Dielectrophoresis

Author(s):  
Ye Ai ◽  
Sang W. Joo ◽  
Sheng Liu ◽  
Shizhi Qian

DC dielectrophoretic (DEP) separation of particles through a constricted microchannel was numerically investigated by a verified multiphysics finite element model, composed of the Navier-Stokes equations for the flow field and the Laplace equation for the electric field solved in an arbitrary Lagrangian-Eulerian (ALE) framework. The particle-fluid-electric field interactions are fully taken into account in the present model. The numerical predictions are in qualitative agreement with the existing experimental results obtained from the literature. The DEP particle separation depends on the particle size and zeta potential. The separation threshold of the particle size can be controlled by adjusting the applied electric field and the constriction ratio of the microfluidic channel. The proposed numerical model can be utilized for the design and optimization of a real microfluidic device for DEP particle separation.

2016 ◽  
Vol 33 (4) ◽  
pp. 513-520 ◽  
Author(s):  
A. Vazifehdoostsaleh ◽  
N. Fatouraee ◽  
M. Navidbakhsh ◽  
F. Izadi

AbstractSpeaking is a very complex process resulting from the interaction between the air flow along the larynx and the vibrating structure of the vocal folds. Sulcus is a disease missing layers in the vocal folds result in cracks resulting in some disorders in producing sounds. Sulcus and its effects on the vocal cord vibrations are numerically studied for the first time in this paper. An ideal model of healthy vocal folds and Sulcus vocalis has been two-dimensionally defined and the finite element model of vocal folds is solved in a fully coupled form. The proposed calculative model was used in a fluid range of the computational fluid dynamics, arbitrary Lagrangian-Eulerian (ALE), incompressible continuity and Navier-Stokes equations and in a structure range of a three-layer elastic linear model. Self-excited oscillations were presented for vocal folds among type II patients and compared with healthy models. Responses were qualitatively and quantitatively studied. The healthy model was compared with numerical and empirical results. In addition, the effects of the disease on the flow parameters and the vibration frequency of the vocal folds were studied. According to the simulated model, the oscillation frequency decreased 25% and the average and instantaneous volume flux significantly increased compared to healthy samples. Results may help present a guideline for surgery and subsequently evaluate patients’ improvement.


2018 ◽  
Vol 34 (6) ◽  
pp. 791-800 ◽  
Author(s):  
A. Vazifehdoostsaleh ◽  
N. Fatouraee ◽  
M. Navidbakhsh ◽  
F. Izadi

AbstractThe effect of sulcus vocalis on vocal folds function is investigated. A type II sulcus vocalis is defined, parameterized and incorporated into a three-dimensional, fully coupled finite element model of vocal folds and laryngeal airway. The proposed Fluid-Structure Interaction (FSI) model is utilized in computational fluid dynamics, Arbitrary Lagrangian-Eulerian (ALE), incompressible continuity and Navier-Stokes equations and in a structure range of a three-layer elastic linear model. Flow parameters, vibration behavior and glottal jet aerodynamics of healthy and patient vocal folds models are compared with each other. Flow visualization is utilized to characterize Coanda effect and three dimensionality of flow patterns. The vibration frequency of vocal folds having sulcus vocalis decreases in comparison with that of healthy ones. Upon increasing the volume flux in the sulcus vocalis model, the non-periodic and disordered behavior of it is visible for patient vocal folds. Underlying mechanisms for the observed changes, possible implications for treatments of sulcus vocalis and human perfect voice production are also discussed.


2021 ◽  
Vol 11 (11) ◽  
pp. 4748
Author(s):  
Monika Balázsová ◽  
Miloslav Feistauer ◽  
Jaromír Horáček ◽  
Adam Kosík

This study deals with the development of an accurate, efficient and robust method for the numerical solution of the interaction of compressible flow and nonlinear dynamic elasticity. This problem requires the reliable solution of flow in time-dependent domains and the solution of deformations of elastic bodies formed by several materials with complicated geometry depending on time. In this paper, the fluid–structure interaction (FSI) problem is solved numerically by the space-time discontinuous Galerkin method (STDGM). In the case of compressible flow, we use the compressible Navier–Stokes equations formulated by the arbitrary Lagrangian–Eulerian (ALE) method. The elasticity problem uses the non-stationary formulation of the dynamic system using the St. Venant–Kirchhoff and neo-Hookean models. The STDGM for the nonlinear elasticity is tested on the Hron–Turek benchmark. The main novelty of the study is the numerical simulation of the nonlinear vocal fold vibrations excited by the compressible airflow coming from the trachea to the simplified model of the vocal tract. The computations show that the nonlinear elasticity model of the vocal folds is needed in order to obtain substantially higher accuracy of the computed vocal folds deformation than for the linear elasticity model. Moreover, the numerical simulations showed that the differences between the two considered nonlinear material models are very small.


Author(s):  
Muheng Zhang ◽  
Yongsheng Lian

Coulter counters are analytical microfluidic instrument used to measure the size and concentration of biological cells or colloid particles suspended in electrolyte. The underlying working mechanism of Coulter counters is the Coulter principle which relies on the fact that when low-conductive cells pass through an electric field these cells cause disturbances in the measurement (current or voltage). Useful information about these cells can be obtained by analyzing these disturbances if an accurate correlation between the measured disturbances and cell characteristics. In this paper we use computational fluid dynamics method to investigate this correlation. The flow field is described by solving the Navier-Stokes equations, the electric field is represented by a Laplace’s equation in which the conductivity is calculated from the Navier-Stokes equations, and the cell motion is calculated by solving the equations of motion. The accuracy of the code is validated by comparing with analytical solutions. The study is based on a coplanar Coulter counter with three inlets that consist of two sheath flow inlet and one conductive flow inlet. The effects of diffusivity, cell size, sheath flow rate, and cell geometry are discussed in details. The impacts of electrode size, gap between electrodes and electrode location on the measured distribution are also studied.


Author(s):  
Elisabeth Longatte

This work is concerned with the modelling of the interaction of a fluid with a rigid or a flexible elastic cylinder in the presence of axial or cross-flow. A partitioned procedure is involved to perform the computation of the fully-coupled fluid solid system. The fluid flow is governed by the incompressible Navier-Stokes equations and modeled by using a fractional step scheme combined with a co-located finite volume method for space discretisation. The motion of the fluid domain is accounted for by a moving mesh strategy through an Arbitrary Lagrangian-Eulerian (ALE) formulation. Solid dyncamics is modeled by a finite element method in the linear elasticity framework and a fixed point method is used for the fluid solid system computation. In the present work two examples are presented to show the method robustness and efficiency.


Author(s):  
M. Vahdati ◽  
C. Breard ◽  
G. Simpson ◽  
M. Imregun

This paper will focus on core-compressor forced response with the aim to develop two design criteria, the so-called chordwise cumulative modal force and heightwise cumulative force, to assess the potential severity of the vibration levels from the correlation between the unsteady pressure distribution on the blade’s surface and the structural modeshape. It is also possible to rank various blade designs since the proposed criterion is sensitive to changes in both unsteady aerodynamic loads and the vibration modeshapes. The proposed methodology was applied to a typical core-compressor forced response case for which measured data were available. The Reynolds-averaged Navier-Stokes equations were used to represent the flow in a non-linear time-accurate fashion on unstructured meshes of mixed elements. The structural model was based on a standard finite element representation from which the vibration modes were extracted. The blade flexibility was included in the model by coupling the finite element model to the unsteady flow model in a time-accurate fashion. A series of numerical experiments were conducted by altering the stator wake and using the proposed indicator functions to minimize the rotor response levels. It was shown that a fourfold response reduction was possible for a certain mode with only a minor modification of the blade.


Author(s):  
N. Lymberopoulos ◽  
K. Giannakoglou ◽  
I. Nikolaou ◽  
K. D. Papailiou ◽  
A. Tourlidakis ◽  
...  

Mechanical constraints dictate the existence of tip clearances in rotating cascades, resulting to a flow leakage through this clearance which considerably influences the efficiency and range of operation of the machine. Three-dimensional Navier-Stokes solvers are often used for the numerical study of compressor and turbine stages with tip-clearance. The quality of numerical predictions depends strongly on how accurately the blade tip region is modelled; in this respect the accurate modelling of tip region was one of the main goals of this work. In the present paper, a 3-D Navier-Stokes solver is suitably adapted so that the flat tip surface of a blade and its sharp edges could be accurately modelled, in order to improve the precision of the calculation in the tip region. The adapted code solves the fully elliptic, steady, Navier-Stokes equations through a space-marching algorithm and a pressure correction technique; the H-type topology is retained, even in cases with thick leading edges where a special treatment is introduced herein. The analysis is applied to two different cases, a linear cascade and a compressor rotor, and comparisons with experimental data are provided.


1986 ◽  
Vol 108 (4) ◽  
pp. 749-754 ◽  
Author(s):  
D. A. Nelson ◽  
E. J. Shaughnessy

The enhancement of convective heat transfer by an electric field is but one aspect of the complex thermoelectric phenomena which arise from the interaction of fluid dynamic and electric fields. Our current knowledge of this area is limited to a very few experimental studies. There has been no formal analysis of the basic coupling modes of the Navier–Stokes and Maxwell equations which are developed in the absence of any appreciable magnetic fields. Convective flows in enclosures are particularly sensitive because the limited fluid volumes, recirculation, and generally low velocities allow the relatively weak electric body force to exert a significant influence. In this work, the modes by which the Navier–Stokes equations are coupled to Maxwell’s equations of electrodynamics are reviewed. The conditions governing the most significant coupling modes (Coulombic forces, Joule heating, permittivity gradients) are then derived within the context of a first-order theory of electrohydrodynamics. Situations in which these couplings may have a profound effect on the convective heat transfer rate are postulated. The result is an organized framework for controlling the heat transfer rate in enclosures.


2018 ◽  
Vol 140 (9) ◽  
Author(s):  
Teng Zhou ◽  
Yongbo Deng ◽  
Hongwei Zhao ◽  
Xianman Zhang ◽  
Liuyong Shi ◽  
...  

Viscoelastic solution is encountered extensively in microfluidics. In this work, the particle movement of the viscoelastic flow in the contraction–expansion channel is demonstrated. The fluid is described by the Oldroyd-B model, and the particle is driven by dielectrophoretic (DEP) forces induced by the applied electric field. A time-dependent multiphysics numerical model with the thin electric double layer (EDL) assumption was developed, in which the Oldroyd-B viscoelastic fluid flow field, the electric field, and the movement of finite-size particles are solved simultaneously by an arbitrary Lagrangian–Eulerian (ALE) numerical method. By the numerically validated ALE method, the trajectories of particle with different sizes were obtained for the fluid with the Weissenberg number (Wi) of 1 and 0, which can be regarded as the Newtonian fluid. The trajectory in the Oldroyd-B flow with Wi = 1 is compared with that in the Newtonian fluid. Also, trajectories for different particles with different particle sizes moving in the flow with Wi = 1 are compared, which proves that the contraction–expansion channel can also be used for particle separation in the viscoelastic flow. The above results for this work provide the physical insight into the particle movement in the flow of viscous and elastic features.


2020 ◽  
Vol 8 (2) ◽  
pp. 87 ◽  
Author(s):  
Paran Pourteimouri ◽  
Kourosh Hejazi

An integrated two-dimensional vertical (2DV) model was developed to investigate wave interactions with permeable submerged breakwaters. The integrated model is capable of predicting the flow field in both surface water and porous media on the basis of the extended volume-averaged Reynolds-averaged Navier–Stokes equations (VARANS). The impact of porous medium was considered by the inclusion of the additional terms of drag and inertia forces into conventional Navier–Stokes equations. Finite volume method (FVM) in an arbitrary Lagrangian–Eulerian (ALE) formulation was adopted for discretization of the governing equations. Projection method was utilized to solve the unsteady incompressible extended Navier–Stokes equations. The time-dependent volume and surface porosities were calculated at each time step using the fraction of a grid open to water and the total porosity of porous medium. The numerical model was first verified against analytical solutions of small amplitude progressive Stokes wave and solitary wave propagation in the absence of a bottom-mounted barrier. Comparisons showed pleasing agreements between the numerical predictions and analytical solutions. The model was then further validated by comparing the numerical model results with the experimental measurements of wave propagation over a permeable submerged breakwater reported in the literature. Good agreements were obtained for the free surface elevations at various spatial and temporal scales, velocity fields around and inside the obstacle, as well as the velocity profiles.


Sign in / Sign up

Export Citation Format

Share Document