Finite Element Analysis of Magnesium Alloy Based Bone Fixation Devices

Author(s):  
Siladitya Pal ◽  
Amy Chaya ◽  
Sayuri Yoshizawa ◽  
Da-Tren Chou ◽  
Daeho Hong ◽  
...  

Each year, there are over six million bone fractures in the U.S., over 30% of which require internal fixation devices to stabilize bone fragments during healing [1–2]. Currently, the gold standard materials for these devices are non-degradable titanium alloys. Unfortunately, these devices cause numerous complications and often require a secondary invasive removal surgery [3–4]. To circumvent these issues, resorbable polymeric devices have been developed, but their mechanical limitations render them inadequate for most load bearing applications [5–7].

2021 ◽  
pp. 88-92
Author(s):  
D. Yu. D’yachenko ◽  
A. A. Vorob’ev ◽  
Iu. A. Makedonova ◽  
О. N. Kurkina ◽  
S. V. D’yachenko ◽  
...  

A special place in the methods of surgical treatment of bone fractures is occupied by transosseous osteosynthesis using external fixation devices of various designs.Objective: to analyze the lower jaw exoskeleton in finite element programs.Materials and research methods. During the research, 36 human lower jaws were involved from the museum of the Department of Oper-ative Surgery and Topographic Anatomy of the Volgograd State Medical University. They were scanned in 3D. All obtained images were loaded into a virtual scene reconstruction program. Fractures of the lower jaws in the corner area were modeled, an apparatus for external fixation of the lower jaw exoskeleton was installed, and the chewing load on the lower jaw was simulated. The place of application of the force was an area on a small fragment of a repositioned 3D model of the mandibular bone corresponding to the place of attachment of the masseter muscle. The evaluation of virtual studies was carried out according to the results of the stress-strain states of the bones and apparatus, the schedule of displacements of objects and the results of the analysis of the safety factor.Research results and discussion. In the course of evaluating the virtual placement of the mini-fixator wires of the apparatus for external fixation of the lower jaw exoskeleton, it was revealed that the main load is applied to the mini-fixator wires on a large fragment and the bone in the area of the wires. For the possibility of precise positioning of the osteofixers of the external fixation device, a device for the safe installation of the spokes of the lower jaw exoskeleton was also developed.Conclusion. Thus, on the basis of computer mathematical analysis, it can be argued that the developed design of the apparatus for external fixation of the lower jaw exoskeleton works under conditions of the maxillofacial region, performs reposition and fixation of bone fragments of the lower jaw under conditions of chewing functioning of the restored fracture of the lower jaw.


Proceedings ◽  
2018 ◽  
Vol 2 (8) ◽  
pp. 523
Author(s):  
Ichiro Shimizu ◽  
Akira Wada ◽  
Makoto Sasaki

Recently, the demand for a bio-absorbable coronary stent to promote recovery after an operation has increased. An option for such a stent is one made of a magnesium alloy, which has biodegradable properties. However, magnesium alloys have lower rigidity and lower ductility than other metals; as such, an appropriate stent structure is required to ensure radial rigidity. In this study, design parameters for an AZ31 magnesium alloy stent with sufficient radial rigidity were investigated. The necessary radial rigidity was determined by comparison tests against commercially available stents. The design parameters of the cell struts were selected and the optimum values to achieve high radial rigidity were investigated by means of elastic–plastic finite element analysis. Finally, a trial model stent based on the optimized design parameters was produced. It was confirmed that the model had sufficient radial rigidity, with no fracturing evident during crimping and expansion processes.


2014 ◽  
Vol 2014.22 (0) ◽  
pp. 163-164
Author(s):  
Shintaro AKANUMA ◽  
Tomoya SUZUKI ◽  
Hayato ASO ◽  
Bunkyo KYO ◽  
Shinichi NISHIDA ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document