Modal Analysis of Fluid-Structure Interaction in a Bent Pipeline

Author(s):  
Gudrun Mikota ◽  
Rainer Haas ◽  
Evgeny Lukachev

Fluid-structure interaction in a bent pipeline is investigated by modal methods. Measured frequency response functions between flow rate excitation and pressure response indicate a coupling effect near the third pipeline resonance. Using modal coordinates for the hydraulic and the mechanical subsystems, a two-degrees-of-freedom study of resonance coupling is carried out. An experimental modal analysis of the coupled hydraulic-mechanical system confirms the predicted resonance splitting; it illustrates the coupling mechanism and shows the relevant mechanical part. An analytical fluid-structure interaction model succeeds in reproducing the measured coupling effect. This model is also used for modification prediction; it demonstrates that an appropriate assembly of mass and damping on the pipeline can help to reduce hydraulic resonance amplitudes.

Author(s):  
Mohammad Khairul Habib Pulok ◽  
Uttam K. Chakravarty

Abstract Rotary-wing aircrafts are the best-suited option in many cases for its vertical take-off and landing capacity, especially in any congested area, where a fixed-wing aircraft cannot perform. Rotor aerodynamic loading is the major reason behind helicopter vibration, therefore, determining the aerodynamic loadings are important. Coupling among aerodynamics and structural dynamics is involved in rotor blade design where the unsteady aerodynamic analysis is also imperative. In this study, a Bo 105 helicopter rotor blade is considered for computational aerodynamic analysis. A fluid-structure interaction model of the rotor blade with surrounding air is considered where the finite element model of the blade is coupled with the computational fluid dynamics model of the surrounding air. Aerodynamic coefficients, velocity profiles, and pressure profiles are analyzed from the fluid-structure interaction model. The resonance frequencies and mode shapes are also obtained by the computational method. A small-scale model of the rotor blade is manufactured, and experimental analysis of similar contemplation is conducted for the validation of the numerical results. Wind tunnel and vibration testing arrangements are used for the experimental validation of the aerodynamic and vibration characteristics by the small-scale rotor blade. The computational results show that the aerodynamic properties of the rotor blade vary with the change of angle of attack and natural frequency changes with mode number.


2018 ◽  
Vol 9 (4) ◽  
pp. 739-751 ◽  
Author(s):  
Anna Maria Tango ◽  
Jacob Salmonsmith ◽  
Andrea Ducci ◽  
Gaetano Burriesci

2018 ◽  
Vol 21 (16) ◽  
pp. 813-823 ◽  
Author(s):  
John T. Wilson ◽  
Lowell T. Edgar ◽  
Saurabh Prabhakar ◽  
Marc Horner ◽  
Raoul van Loon ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document