Influence of the Lubricant Thermo-Piezo-Viscous Property on Hydrostatic Bearings in Oil Hydraulics

Author(s):  
Per Johansen ◽  
Daniel B. Roemer ◽  
Torben O. Andersen ◽  
Henrik C. Pedersen

In fluid power machinery hydrostatic bearings are frequently used, and a first approximation approach to design is determination of a balance ratio by analytical calculation of the hydrostatic pressure force. Usually this is performed assuming that the thermo-piezo-viscous property can be neglected. However, in applications as piston machines, where pressure in many cases exceeds 200 Bar, such assumption leads to considerable error in the balance ratio prediction, due to the piezo-viscous property of the lubricant. Furthermore, the thermo-viscosity relation also has a significant influence, which adds to the discrepancy of such simple design approach. In this paper the hydrostatic pressure force calculation is reviewed in terms of thermohydrodynamic (THD) lubrication theory, and simple analytical approximations of the hydrostatic pressure force, incorporating the piezo-viscous and thermo-viscous property of the lubricant, are presented. In order to investigate validity of the approximations a numerical THD model is developed. A comparison study of the numerical and analytical predictions is performed in order to validate the simple design approach. In addition, the assumptions that form the basis of these analytical approximations are explored in order to clarify the limits of application. In conclusion, it is found that the spatial gradient of the thermal field on the bearing surface is the significant factor in the thermo-viscous effect on the hydrostatic pressure profile, which leads to the conclusion that design engineers need to understand the thermodynamics of hydrostatic bearings, when using the conventional simple analytical approach, neglecting thermo-piezo-viscosity, in hydrostatic pressure force calculations.

2021 ◽  
Vol 9 (3) ◽  
pp. 290
Author(s):  
Yukai Li ◽  
Yuli Hu ◽  
Youguang Guo ◽  
Baowei Song ◽  
Zhaoyong Mao

Permanent magnet couplings can convert a dynamic seal into a static seal, thereby greatly improving the stability of the underwater propulsion unit. In order to make full use of the tail space and improve the transmitted torque capability, a conical Halbach permanent magnet coupling (C-HPMC) is proposed in this paper. The C-HPMC combines multiple cylindrical HPMCs with different sizes into an approximately conical structure. Compared with the conical permanent magnet couplings in our previous work, the novel C-HPMC has better torque performance and is easy to process. The analytical calculation method of transmitted torque of C-HPMC is proposed on the basis of torque calculation of the three common types of HPMCs. The accuracy of the torque calculation of the three HPMCs is verified, and the torque performance of the three HPMCSs of different sizes is compared and discussed. The “optimal type selection” method is proposed and applied in the design of C-HPMC. Finally, on the basis of torque analysis calculation and axial force calculation, a complete flowchart of the design and performance analysis of C-HPMC is described.


2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
Biswa Binayak Mangaraj ◽  
Manas Ranjan Jena ◽  
Saumendra Kumar Mohanty

A simple design procedure to realize an optimum antenna using bacteria foraging algorithm (BFA) is proposed in this paper. The first antenna considered is imaginary. This antenna is optimized using the BFA along with a suitable fitness function formulated by considering some performance parameters and their best values. To justify the optimum design approach, one 12-element Yagi-Uda antenna is considered for an experiment. The optimized result of this antenna obtained using the optimization algorithm is compared with nonoptimized (conventional) result of the same antenna to appreciate the importance of optimization.


2021 ◽  
Author(s):  
Zhifeng Xu

This research investigates band gaps and frequency responses of one-dimensional periodic structures and further presents an optimal design approach for one-dimensional rubber-concrete periodic foundations based on the proposed analytical formulas for approximating the first few band gaps. The presented design approach is optimal for being able of globally searching the best solution which effectively cooperates the band gaps with the superstructure’s resonance frequencies. Firstly, frequency responses of one-dimensional periodic structures and the corresponding approximation method are studied. Furthermore, analytical approximation formulas for the first few band gaps, localization factor, attenuation coefficient, and frequency responses of one-dimensional rubber-concrete periodic foundations are proposed and verified. Lastly, inspired by the proposed analytical approximation for computing band gaps, an optimal design approach for one-dimensional rubber-concrete periodic foundations is presented and applied to a practical example, whose optimality is verified theoretically and numerically.


2012 ◽  
Vol 9 (5) ◽  
pp. 346-351 ◽  
Author(s):  
Goh Chin Hock ◽  
Chandan Kumar Charabarty ◽  
Tiong Sieh Kiong ◽  
Oon Kheng Heong

Sign in / Sign up

Export Citation Format

Share Document