PEM Fuel Cell Bipolar Plate Reliability and Material Selection

Author(s):  
Michael J. Ajersch ◽  
Michael W. Fowler ◽  
Kunal Karan ◽  
Brant A. Peppley

The majority of the research on PEM fuel cells to date has been focused on assessing fuel cell behavior in the early stages of its life cycle. However, as widespread commercialization approaches, PEM fuel cells will be required to operate reliably for increasingly longer periods of time. It therefore also becomes equally important to characterize fuel cell performance at the end of its lifecycle. The reliability of a PEM fuel cell is dependent on the material properties, the manufacturing methods, and the design of its individual components. Among these components, the bipolar plates have received the least attention as a factor that may limit a fuel cell’s life cycle performance. Driven by the need for cost and weight reduction of fuel cell stacks, a significant amount of development work has been directed towards the development of new materials and designs for bipolar plates. Selection of an appropriate design and/or material for bipolar plates requires that reliability and durability data must be available, and that testing protocols appropriate and indicative of fuel cell operation be established. This paper provides a review fuel cell bipolar plate reliability and durability. Topics that will be addressed include bipolar plate functionality and design requirements, plate materials selection, plate failure modes. This is followed by a description of new bipolar plate reliability/durability test methods being developed at the CAMM Fuel Cell Research Group.

2004 ◽  
Vol 19 (6) ◽  
pp. 1723-1729 ◽  
Author(s):  
Neil Aukland ◽  
Abdellah Boudina ◽  
David S. Eddy ◽  
Joseph V. Mantese ◽  
Margarita P. Thompson ◽  
...  

During the operation of proton exchange membrane (PEM) fuel cells, a high-resistance oxide is often formed on the cathode surface of base metal bipolar plates. Over time, this corrosion mechanism leads to a drop in fuel cell efficiency and potentially to complete failure. To address this problem, we have developed alloys capable of forming oxides that are both conductive and chemically stable under PEM fuel cell operating conditions. Five alloys of titanium with tantalum or niobium were investigated. The oxides were formed on the alloys by cyclic voltammetry in solutions mimicking the cathode- and anode-side environment of a PEM fuel cell. The oxides of all tested alloys had lower surface resistance than the oxide of pure titanium. We also investigated the chemical durability of Ti–Nb and Ti–Ta alloys in more concentrated solutions beyond those typically found in PEM fuel cells. The oxide films formed on Ti–Nb and Ti–Ta alloys remained conductive and chemically stable in these concentrated solutions. The stability of the oxide films was evaluated; Ti alloys having 3% Ta and Nb were identified as potential candidates for bipolar plate materials.


Energies ◽  
2018 ◽  
Vol 11 (11) ◽  
pp. 3203 ◽  
Author(s):  
Oluwatosin Ijaodola ◽  
Emmanuel Ogungbemi ◽  
Fawwad Nisar. Khatib ◽  
Tabbi Wilberforce ◽  
Mohamad Ramadan ◽  
...  

Environmental concerns of greenhouse gases (GHG) effect from fossil commodities and the fast increase in global energy demand have created awareness on the need to replace fossil fuels with other sources of clean energy. PEM fuel cell (PEMFC) is a promising source of energy to replace fossil fuels. The commercialization of the cell depends on its price, weight and mechanical strength. Bipolar plates are among the main components of PEMFC which perform some significant functions in the fuel cell stack. Metal bipolar plate is considered by the research community as the future material for fuel cells. However, surface coating is required for metals to enhance its corrosion resistance, hydrophilicity and interfacial contact resistance (ICR) in PEM fuel cells. Open pore cellular metal foam (OPCMF) materials have been used to replace the conventional flow field channel in recent times due to its low electrical resistance, high specific area and high porosity; however, it endures the same corrosion problem as the metallic bipolar plate. This investigation offers an overview on different types of bipolar plates and techniques in coating metallic bipolar platse and open pore metal foam as flow field channel materials to improve the corrosion resistance which will eventually increase the efficiency of the fuel cell appreciably.


Author(s):  
Scott Lux ◽  
Arif Nelson ◽  
Nicholas Josefik ◽  
Franklin Holcomb

The U.S. Army Engineer Research and Development Center, Construction Engineering Research Laboratory (ERDC-CERL) managed the Residential Proton Exchange Membrane (PEM) Fuel Cell Demonstration. The U.S. Congress funded this project for fiscal years 2001–2004. A fleet of 91 residential-scale PEM fuel cells, ranging in size from 1–5 kW, was demonstrated at various U.S. Department of Defense (DoD) facilities worldwide. This detailed analysis looks into the most prevalent means of failure in the PEM fuel cell systems as categorized from the stack, reformer, and power-conditioning systems as well as the subsequent subsystems. Also evaluated are the lifespan and failure modes of selected fuel cell components, based on component type, age, and usage. The analysis shows while the fuel cell stack components had the single highest number of outages, the balance of plant made for 60.6% of the total outages. The hydrogen cartridges were the most prevalent component replaced during the entire program. The natural gas fuel cell stacks had the highest average operational lifetime; one stack reached a total of 10,250 hours.


2005 ◽  
Vol 2 (4) ◽  
pp. 290-294 ◽  
Author(s):  
Shuo-Jen Lee ◽  
Ching-Han Huang ◽  
Yu-Pang Chen ◽  
Chen-Te Hsu

Aluminum was considered a good candidate material for bipolar plates of the polymer electrolyte membrane (PEM) fuel cells due to its low cost, light weight, high strength and good manufacturability. But there were problems of both chemical and electrochemical corrosions in the PEM fuel cell operating environment. The major goals of this research are to find proper physical vapor deposition (PVD) coating materials which would enhance surface properties by making significant improvements on corrosion resistance and electrical conductivity at a reasonable cost. Several coating materials had been studied to analyze their corrosion resistance improvement. The corrosion rates of all materials were tested in a simulated fuel cell environment. The linear polarization curve of electrochemical method measured by potentiostat instrument was employed to determine the corrosion current. Results of the corrosion tests indicated that all of the coating materials had good corrosion resistance and were stable in the simulated fuel cell environment. The conductivities of the coated layers were better and the resistances changed very little after the corrosion test. At last, single fuel cells were made by each PVD coating material. Fuel cell tests were conducted to determine their performance w.r.t. that was made of graphite. The results of fuel cell tests indicated that metallic bipolar plates with PVD coating could be used in PEM fuel cells.


2015 ◽  
Vol 12 (1) ◽  
Author(s):  
A. Verma ◽  
R. Pitchumani

Polymer electrolyte membrane (PEM) fuel cells are well suited for automotive applications compared to other types of fuel cells owing to their faster transient response and low-temperature operation. Due to rapid change in loads during automotive applications, study of dynamic behavior is of paramount importance. This study focuses on elucidating the transient response of a PEM fuel cell for specified changes in operating parameters, namely, voltage, pressure, and stoichiometry at the cathode and the anode. Transient numerical simulations are carried out for a single-channel PEM fuel cell to illustrate the response of power as the operating parameters are subjected to specified changes. These parameters are also optimized with an objective to match the power requirements of an automotive drive cycle over a certain period of time.


2005 ◽  
Vol 2 (4) ◽  
pp. 226-233 ◽  
Author(s):  
Shaoduan Ou ◽  
Luke E. K. Achenie

Artificial neural network (ANN) approaches for modeling of proton exchange membrane (PEM) fuel cells have been investigated in this study. This type of data-driven approach is capable of inferring functional relationships among process variables (i.e., cell voltage, current density, feed concentration, airflow rate, etc.) in fuel cell systems. In our simulations, ANN models have shown to be accurate for modeling of fuel cell systems. Specifically, different approaches for ANN, including back-propagation feed-forward networks, and radial basis function networks, were considered. The back-propagation approach with the momentum term gave the best results. A study on the effect of Pt loading on the performance of a PEM fuel cell was conducted, and the simulated results show good agreement with the experimental data. Using the ANN model, an optimization model for determining optimal operating points of a PEM fuel cell has been developed. Results show the ability of the optimizer to capture the optimal operating point. The overall goal is to improve fuel cell system performance through numerical simulations and minimize the trial and error associated with laboratory experiments.


2019 ◽  
Vol 30 (4) ◽  
pp. 2077-2097 ◽  
Author(s):  
Zhenxiao Chen ◽  
Derek Ingham ◽  
Mohammed Ismail ◽  
Lin Ma ◽  
Kevin J. Hughes ◽  
...  

Purpose The purpose of this paper is to investigate the effects of hydrogen humidity on the performance of air-breathing proton exchange membrane (PEM) fuel cells. Design/methodology/approach An efficient mathematical model for air-breathing PEM fuel cells has been built in MATLAB. The sensitivity of the fuel cell performance to the heat transfer coefficient is investigated first. The effect of hydrogen humidity is also studied. In addition, under different hydrogen humidities, the most appropriate thickness of the gas diffusion layer (GDL) is investigated. Findings The heat transfer coefficient dictates the performance limiting mode of the air-breathing PEM fuel cell, the modelled air-breathing fuel cell is limited by the dry-out of the membrane at high current densities. The performance of the fuel cell is mainly influenced by the hydrogen humidity. Besides, an optimal cathode GDL and relatively thinner anode GDL are favoured to achieve a good performance of the fuel cell. Practical implications The current study improves the understanding of the effect of the hydrogen humidity in air-breathing fuel cells and this new model can be used to investigate different component properties in real designs. Originality/value The hydrogen relative humidity and the GDL thickness can be controlled to improve the performance of air-breathing fuel cells.


Author(s):  
M. I. Rosli ◽  
M. Pourkashanian ◽  
D. B. Ingham ◽  
L. Ma ◽  
D. Borman ◽  
...  

This paper reviews some of the previous research works on direct visualisation inside PEM fuel cells via a transparent single cell for the water behaviour investigation. Several papers which have employed the method have been selected and summarised and a comparison between the design of the cell, materials, methods and visual results are presented. The important aspects, advantages of the method and a summary on the previous work are discussed. Some initial work on transparent PEM fuel cell design using a single serpentine flow-field pattern is described. The results show that the direct visualisation via transparent PEM fuel cells could be one potential technique for investigating the water behavior inside the channels and a very promising way forward to provide useful data for validation in PEM fuel cell modelling and simulation.


Author(s):  
Denise A. McKahn ◽  
Whitney McMackin

We present the design of a multi-cell, low temperature PEM fuel cell for controlled meteorological balloons. Critical system design parameters that distinguish this application are the lack of reactant humidification and cooling due to the low power production, high required power mass-density and relatively short flight durations. The cell is supplied with a pressure regulated and dead ended anode, and flow controlled cathode at variable air stoichiometry. The cell is not heated and allowed to operate with unregulated temperature. Our prototype cell was capable of achieving power densities of 43 mW/cm2/cell or 5.4 mW/g. The cell polarization performance of large format PEM fuel cell stacks is an order of magnitude greater than for miniature PEM fuel cells. These performance discrepancies are a result of cell design, system architecture, and reactant and thermal management, indicating that there are significant gains to be made in these domains. We then present design modifications intended to enable the miniature PEM fuel cell to achieve power densities of 13 mW/g, indicating that additional performance gains must be made with improvements in operating conditions targeting achievable power densities of standard PEM fuel cells.


Sign in / Sign up

Export Citation Format

Share Document