Synthesis and Performance Evaluation of an S-POSS Based PBI Electrolyte for High Temperature PEM Fuel Cell Applications

Author(s):  
Susanta K. Das ◽  
K. J. Berry

In this paper, using patented nano-additive based polymer synthesis technology, a novel approach to the design and fabrication of high temperature proton exchange membrane (PEM) has been developed. The presence of sulfonated octaphenyl POSS (S-POSS) in a PBI-PA (polybenzimidazole-phosphoric acid) membrane results in a 40–50% increase in conductivity at 120–200$deg relative to non-sulfonated silica or POSS control fillers at comparable weight percent filler loadings and PBI molecular masses, and also relative to unfilled PBI-PA membranes. In addition, the presence of S-POSS and silica both result in physical reinforcement of the membrane and increased its modulus and mechanical integrity, but only S-POSS offers the benefits of both increased conductivity and increased modulus. Isophthalic acid and 3,3’-diaminobenzidine (DAB) were polymerized in the presence of polyphosphoric acid (PPA) and S-POSS nanoadditive, and the degree of polymerization was monitored by viscosity and torque change measurements. Molecular mass was determined by inherent viscosity measurements of samples removed from the reaction solution. Membranes were prepared by casting the reaction solution and allowing PPA to hydrolyze to PA under ambient conditions. The membranes were characterized for acid content, in-plane conductivity, tensile modulus and shear modulus, and were roll-milled to achieve the desired thickness for membrane electrode assembly (MEA) fabrication.

2015 ◽  
Vol 645-646 ◽  
pp. 1175-1180 ◽  
Author(s):  
Da Zhi Wang ◽  
Xiao Hu Zhu ◽  
Wen Zha ◽  
Tong Qun Ren ◽  
Ming Qiang Li ◽  
...  

In this work, a quaternized polysulfone/PTFE/H3PO4composite membrane was prepared and used to a high temperature sustainable proton exchange membrane (HTPEM). This HTPEM was prepared based on a porous PTFE membrane, which can sustainable for 200 °C. Pt/C nano-suspension was prepared and deposited layer-by-layer on the gas diffusion layer (GDL) using electrohydrodynamic atomization (EHDA) deposition technique for the formation of cathode and anode catalyst layers (CLs). The CLs presented well packed and porous features. This EHDA deposited cathode and anode CLs, GDL and HTPEM were assembled to a membrane electrode assembly (MEA) and high temperature methanol fuel cell (HTMFC). The results showed that low concentration and high flow rate of methanol aqueous solution led to the loss of phosphoric acid on HTPEM, which resulted in the decline of the HTPEM. When the concentration and the flow rate of the methanol aqueous solution was increased and reduced, respectively, the cell can work properly at a temperature of 170 °C.


Author(s):  
Hsiu-Li Lin ◽  
Chih-Ren Hu ◽  
Po-Hao Su ◽  
Yu-Cheng Chou ◽  
Che-Yu Lin

Phosphoric acid doped poly(benzimidazole) (PBI) is one of excellent candidates of proton exchange membranes for high temperature (150–180°C) proton exchange membrane fuel cells (PEMFCs). However, the strong inter-polymer hydrogen bonds cause low elongation and brittleness of PBI membranes. In this work, we synthesize poly(benzimidazole) (PBI) and butylsulfonated poly(benzimidazole) (PBI-BS), in which around 22 mole% of imidazole –NH groups of PBI are grafted with sulfonated butyl groups. We show the elongation, phosphoric acid doping level, and proton conductivity of PBI can be improved by blending ∼ 20 wt% of PBI-BS in the PBI membrane, and the membrane electrode assembly prepared from PBI/PBI-BS (8/2 by wt) blend membrane has a better PEMFC performance at 140°C ∼ 180°C than that prepared from PBI membrane. It is believed that the crosslink interactions of imidazole -NH and -N=C-groups with side chain –C4H8−SO3H groups of PBI-BS reduces the inter-PBI hydrogen bonds and increases the free volume of polymers, which leads to the enhancements of the membrane toughness and phosphoric acid doping level and the PEMFC performance.


2007 ◽  
Vol 561-565 ◽  
pp. 1589-1592 ◽  
Author(s):  
Gang Liu ◽  
Hua Min Zhang ◽  
Yuan Wei Ma

Pt4ZrO2/C was prepared and compared with commercial Pt/C (46.6 wt.% TKK) in terms of the durability as cathode catalyst in a high temperature proton exchange membrane fuel cell (PEMFC) based on H3PO4 doped polybenzimidazole (PBI) by a potential sweep test. The catalysts before and after the potential sweep test were characterized by RDE, XRD, TEM and ICP-AES. After 3000 cycles potential sweep test, the overall performance loss of the Pt4ZrO2/C membrane electrode assembly (MEA) was less than that of the Pt/C MEA. In brief, the preliminary results indicate that Pt4ZrO2/C catalyst is a good candidate of Pt/C catalyst in high temperature PEMFC based on H3PO4 doped PBI for achieving longer cell life-time and higher cell performance.


Author(s):  
Britta Mayerhöfer ◽  
Konrad Ehelebe ◽  
Florian Dominik Speck ◽  
Markus Bierling ◽  
Johannes Bender ◽  
...  

Bipolar membrane|electrode interface water electrolyzers (BPEMWE) were found to outperform a proton exchange membrane (PEM) water electrolyzer reference in a similar membrane electrode assembly (MEA) design based on individual porous...


Sign in / Sign up

Export Citation Format

Share Document