Effects of Tip Geometry and Tip Clearance on the Mass/Heat Transfer From a Large-Scale Gas Turbine Blade

Author(s):  
M. Papa ◽  
R. J. Goldstein ◽  
F. Gori

An experimental investigation has been performed to measure average and local mass transfer coefficients on the tip of a gas turbine blade using the naphthalene sublimation technique. The heat/mass transfer analogy can be applied to obtain heat transfer coefficients from the measured mass transfer data. Flow visualization on the tip surface is provided using an oil dot technique. Two different tip geometries are considered: a squealer tip and a winglet-squealer tip having a winglet on the pressure side and a squealer on the suction side of the blade. Measurements have been taken at tip clearance levels ranging from 0.6% to 3.6% of actual chord. The exit Reynolds number based on actual chord is approximately 7.2 × 105 for all measurements. Flow visualization shows impingement and recirculation regions on the blade tip surface, providing an interpretation of the mass transfer distributions and offering insight into the fluid dynamics within the gap. For both tip geometries the tip clearance level has a significant effect on the mass transfer distribution. The squealer tip has a higher average mass transfer that sensibly decreases with gap level, whereas a more limited variation with gap level is observed for the average mass transfer from the winglet-squealer tip.

2003 ◽  
Vol 125 (1) ◽  
pp. 90-96 ◽  
Author(s):  
M. Papa ◽  
R. J. Goldstein ◽  
F. Gori

An experimental investigation has been performed to measure average and local mass transfer coefficients on the tip of a gas turbine blade using the naphthalene sublimation technique. The heat/mass transfer analogy can be applied to obtain heat transfer coefficients from the measured mass transfer data. Flow visualization on the tip surface is provided using an oil dot technique. Two different tip geometries are considered: a squealer tip and a winglet-squealer tip having a winglet on the pressure side and a squealer on the suction side of the blade. Measurements have been taken at tip clearance levels ranging from 0.6 to 3.6% of actual chord. The exit Reynolds number based on actual chord is approximately 7.2×105 for all measurements. Flow visualization shows impingement and recirculation regions on the blade tip surface, providing an interpretation of the mass transfer distributions and offering insight into the fluid dynamics within the gap. For both tip geometries the tip clearance level has a significant effect on the mass transfer distribution. The squealer tip has a higher average mass transfer that sensibly decreases with gap level, whereas a more limited variation with gap level is observed for the average mass transfer from the winglet-squealer tip.


Author(s):  
E. Findeisen ◽  
B. Woerz ◽  
M. Wieler ◽  
P. Jeschke ◽  
M. Rabs

This paper presents two different numerical methods to predict the thermal load of a convection-cooled gas-turbine blade under realistic operating temperature conditions. The subject of the investigation is a gas-turbine rotor blade equipped with an academic convection-cooling system and investigated at a cascade test-rig. It consists of three cooling channels, which are connected outside the blade, so allowing cooling air temperature measurements. Both methods use FE models to obtain the temperature distribution of the solid blade. The difference between these methods lies in the generation of the heat transfer coefficients along the cooling channel walls which serve as a boundary condition for the FE model. One method, referred to as the FEM1D method, uses empirical one-dimensional correlations known from the available literature. The other method, the FEM2D method, uses three-dimensional CFD simulations to obtain two-dimensional heat transfer coefficient distributions. The numerical results are compared to each other as well as to experimental data, so that the benefits and limitations of each method can be shown and validated. Overall, this paper provides an evaluation of the different methods which are used to predict temperature distributions in convection-cooled gas-turbines with regard to accuracy, numerical cost and the limitations of each method. The temperature profiles obtained in all methods generally show good agreement with the experiments. However, the more detailed methods produce more accurate results by causing higher numerical costs.


1985 ◽  
Vol 107 (4) ◽  
pp. 991-997 ◽  
Author(s):  
C. Camci ◽  
T. Arts

This paper deals with an experimental investigation of heat transfer across the suction side of a high-pressure, film-cooled gas turbine blade and with an attempt to numerically predict this quantity both with and without film cooling. The measurements were performed in the VKI isentropic compression tube facility under well-simulated gas turbine conditions. Data measured in a stationary frame, with and without film cooling, are presented. The predictions of convective heat transfer, including streamwise curvature effects, are compared with the measurements. A new approach to determine the augmented mixing lengths near the ejection holes on a highly convex wall is discussed and numerical results agree well with experimentally determined heat transfer coefficients in the presence of film cooling.


2001 ◽  
Vol 7 (6) ◽  
pp. 415-424 ◽  
Author(s):  
Hui Du ◽  
Srinath V. Ekkad ◽  
Je-Chin Han ◽  
C. Pang Lee

Detailed heat transfer coefficient and film effectiveness distributions over a gas turbine blade with film cooling are obtained using a transient liquid crystal image technique. The test blade has three rows of film holes on the leading edge and two rows each on the pressure and suction surfaces. A transient liquid crystal technique maps the entire blade midspan region, and helps provide detailed measurements, particularly near the film hole. Tests were performed on a five-blade linear cascade in a low-speed wind tunnel. The mainstream Reynolds number based on cascade exit velocity is5.3×105. Two different coolants (air andCo2) were used to simulate coolant density effect. Coolant blowing ratio was varied between 0.8 and 1.2 for air injection and 0.4–1.2 forCo2injection. Results show that film injection promotes earlier laminar-turbulent boundary layer transition on the suction surface and also enhances local heat transfer coefficients (up to 80%) downstream of injection. An increase in coolant blowing ratio produces higher heat transfer coefficients for both coolants. This effect is stronger immediately downstream of injection holes. Film effectiveness is highest at a blowing ratio of 0.8 for air injection and at a blowing ratio of 1.2 forCo2injection. Such detailed results will help provide insight into the film cooling phenomena on a gas turbine blade.


Author(s):  
Jae Su Kwak ◽  
Je-Chin Han

Detailed heat transfer coefficient distributions on a squealer tip of a gas turbine blade were measured using a hue detection based transient liquid crystals technique. The heat transfer coefficients on the shroud and near tip region of the pressure and suction sides of a blade were also measured. Tests were performed on a five-bladed linear cascade with blow down facility. The blade was a 2-dimensional model of a first stage gas turbine rotor blade with a profile of a GE-E3 aircraft gas turbine engine rotor blade. The Reynolds number based on the cascade exit velocity and axial chord length of a blade was 1.1×106 and the total turning angle of the blade was 97.7°. The overall pressure ratio was 1.23 and the inlet and exit Mach number were 0.25 and 0.59, respectively. The turbulence intensity level at the cascade inlet was 9.7%. The heat transfer measurements were taken at the three different tip gap clearances of 1.0%, 1.5% and 2.5% of blade span. Results showed that the overall heat transfer coefficient on the squealer tip was higher than that on the shroud and the near tip region of the pressure and suction side. Results also showed that the heat transfer coefficients on the squealer tip and its shroud were lower than that on the plane tip and shroud, but the heat transfer coefficients on the near tip region of suction and pressure sides were higher for the squealer tip case.


2003 ◽  
Vol 125 (4) ◽  
pp. 669-677 ◽  
Author(s):  
Jae Su Kwak ◽  
Je-Chin Han

Detailed heat transfer coefficient distributions on a squealer tip of a gas turbine blade were measured using a hue detection based transient liquid crystals technique. The heat transfer coefficients on the shroud and near tip regions of the pressure and suction sides of a blade were also measured. Tests were performed on a five-bladed linear cascade with a blow-down facility. The blade was a two-dimensional model of a first stage gas turbine rotor blade with a profile of a GE-E3 aircraft gas turbine engine rotor blade. The Reynolds number based on the cascade exit velocity and axial chord length of a blade was 1.1×106 and the total turning angle of the blade was 97.7 deg. The overall pressure ratio was 1.2 and the inlet and exit Mach number were 0.25 and 0.59, respectively. The turbulence intensity level at the cascade inlet was 9.7 percent. The heat transfer measurements were taken at the three different tip gap clearances of 1.0 percent, 1.5 percent, and 2.5 percent of blade span. Results showed that the overall heat transfer coefficients on the squealer tip were higher than that on the shroud surface and the near tip regions of the pressure and suction sides. Results also showed that the heat transfer coefficients on the squealer tip and its shroud were lower than that on the plane tip and shroud. However, the reductions of heat transfer coefficients near the tip regions of the pressure and suction sides were not remarkable.


Author(s):  
Dariusz Jakubek

This paper concentrates on temperature distribution in the gas turbine blade equipped by the cooling holes system on transient heat transfer. The present study requires the specification of internal and external boundary conditions. The calculations had been done using both Crank-Nicolson algorithm, explicit and implicit methods, in which different heat transfer coefficients on internal cooling surfaces of the holes were applied. The value of coefficients has a direct and crucial impact on the final result. The heat transfer coefficient of cooling the working surface of the of heat pipes was 1600 W/(m2K). It was found that there were no significant differences of temperature distribution in comparison of results from explicit method in the Ansys analysis, Crank-Nicolson algorithm and implicit method in Matlab. The simulation is based on Finite Element Method, which uses the Crank Nicolson algorithm.


2003 ◽  
Vol 9 (2) ◽  
pp. 81-95 ◽  
Author(s):  
P. Jin ◽  
R. J. Goldstein

Local mass and heat transfer measurements on a simulated high-pressure turbine blade-tip surface are conducted in a linear cascade with a nonmoving tip endwall, using a naphthalene sublimation technique. The effects of tip clearance (0.86–6.90% of chord) are investigated at various exit Reynolds numbers (4–7 ×105) and turbulence intensities (0.2 and 12.0%).The mass transfer on the tip surface is significant along its pressure edge at the smallest tip clearance. At the two largest tip clearances, the separation bubble on the tip surface can cover the whole width of the tip on the second half of the tip surface. The average mass-transfer rate is highest at a tip clearance of 1.72% of chord. The average mass-transfer rate on the tip surface is four and six times as high as on the suction and the pressure surface, respectively. A high mainstream turbulence level of 12.0% reduces average mass-transfer rates on the tip surface, while the higher mainstream Reynolds number generates higher local and average mass-transfer rates on the tip surface.


Sign in / Sign up

Export Citation Format

Share Document