Inlet Fogging of Gas Turbine Engines: Part A — Fog Droplet Thermodynamics, Heat Transfer and Practical Considerations

Author(s):  
Mustapha Chaker ◽  
Cyrus B. Meher-Homji ◽  
Thomas Mee

The inlet fogging of gas turbine engines for power augmentation has seen increasing application over the past decade yet not a single technical paper treating the physics and engineering of the fogging process, droplet size measurement, droplet kinetics, or the duct behavior of droplets, from a gas turbine perspective, is available. This paper provides the results of extensive experimental and theoretical studies conducted over several years coupled with practical aspects learned in the implementation of nearly 500 inlet fogging systems on gas turbines ranging in power from 5 to 250 MW. Part A of the paper covers the underlying theory of droplet thermodynamics and heat transfer, and provides several practical pointers relating to the implementation and application of inlet fogging to gas turbine engines.

2004 ◽  
Vol 126 (3) ◽  
pp. 545-558 ◽  
Author(s):  
Mustapha Chaker ◽  
Cyrus B. Meher-Homji ◽  
Thomas Mee

The inlet fogging of gas turbine engines for power augmentation has seen increasing application over the past decade yet not a single technical paper treating the physics and engineering of the fogging process, droplet size measurement, droplet kinetics, or the duct behavior of droplets, from a gas turbine perspective, is available. This paper provides the results of extensive experimental and theoretical studies conducted over several years coupled with practical aspects learned in the implementation of nearly 500 inlet fogging systems on gas turbines ranging in power from 5 to 250 MW. Part I of the paper covers the underlying theory of droplet thermodynamics and heat transfer, and provides several practical pointers relating to the implementation and application of inlet fogging to gas turbine engines.


Author(s):  
Mustapha Chaker ◽  
Cyrus B. Meher-Homji ◽  
Thomas Mee

The inlet fogging of gas turbine engines for power augmentation has seen increasing application over the past decade yet not a single technical paper treating the physics and engineering of the fogging process, droplet size measurement, droplet kinetics, or the duct behavior of droplets, from a gas turbine perspective, is available. This paper provides the results of extensive experimental and theoretical studies conducted over several years, coupled with practical aspects learned in the implementation of nearly 500 inlet fogging systems on gas turbines ranging in power from 5 to 250 MW. Part B of the paper treats the practical aspects of fog nozzle droplet sizing, measurement and testing presenting the information from a gas turbine fogging perspective. This paper describes the different measurement techniques available, covers design aspects of nozzles, provides experimental data on different nozzles and provides recommendations for a standardized nozzle testing method for gas turbine inlet air fogging.


Author(s):  
Mustapha Chaker ◽  
Cyrus B. Meher-Homji ◽  
Thomas Mee

The inlet fogging of gas turbine engines for power augmentation has seen increasing application over the past decade yet not a single technical paper treating the physics and engineering of the fogging process, droplet size measurement, droplet kinetics, or the duct behavior of droplets, from a gas turbine perspective, is available. This paper along with Parts A and B provides the results of extensive experimental and theoretical studies conducted over several years coupled with practical aspects learned in the implementation of nearly 500 inlet fogging systems on gas turbines ranging in power from 5 to 250 MW. In part C of this paper, the complex behavior of fog droplets in the inlet duct is addressed and experimental results from several wind tunnel studies are covered.


2004 ◽  
Vol 126 (3) ◽  
pp. 559-570 ◽  
Author(s):  
Mustapha Chaker ◽  
Cyrus B. Meher-Homji ◽  
Thomas Mee

The inlet fogging of gas turbine engines for power augmentation has seen increasing application over the past decade yet not a single technical paper treating the physics and engineering of the fogging process, droplet size measurement, droplet kinetics, or the duct behavior of droplets, from a gas turbine perspective, is available. This paper provides the results of extensive experimental and theoretical studies conducted over several years, coupled with practical aspects learned in the implementation of nearly 500 inlet fogging systems on gas turbines ranging in power from 5 to 250 MW. Part II of the paper treats the practical aspects of fog nozzle droplet sizing, measurement and testing presenting the information from a gas turbine fogging perspective. This paper describes the different measurement techniques available, covers design aspects of nozzles, provides experimental data on different nozzles, and provides recommendations for a standardized nozzle testing method for gas turbine inlet air fogging.


2004 ◽  
Vol 126 (3) ◽  
pp. 571-580 ◽  
Author(s):  
Mustapha Chaker ◽  
Cyrus B. Meher-Homji ◽  
Thomas Mee

The inlet fogging of gas turbine engines for power augmentation has seen increasing application over the past decade yet not a single technical paper treating the physics and engineering of the fogging process, droplet size measurement, droplet kinetics, or the duct behavior of droplets, from a gas turbine perspective, is available. This paper along with Parts I and II provides the results of extensive experimental and theoretical studies conducted over several years coupled with practical aspects learned in the implementation of nearly 500 inlet fogging systems on gas turbines ranging in power from 5 to 250 MW. In Part III of this paper, the complex behavior of fog droplets in the inlet duct is addressed and experimental results from several wind tunnel studies are covered.


2006 ◽  
Vol 128 (4) ◽  
pp. 826-839 ◽  
Author(s):  
Mustapha A. Chaker ◽  
Cyrus B. Meher-Homji ◽  
Thomas Mee

The inlet fogging of gas turbine engines for power augmentation has seen increasing application over the past decade. This paper provides the results of extensive experimental and theoretical studies conducted on impaction pin fog nozzles. It covers the important area of the fog plume pattern of impaction pin nozzles and examines fog-plume uniformity. The subject of sprinkle (large droplet formation) from the nozzles is also examined in detail and is shown to be nonsignificant. The effect, on evaporation rate, of ambient climatic conditions and the location of the fog nozzle with respect to the gas turbine inlet duct has been analytically and experimentally analyzed. An analytical model is used to study the evaporation dynamics of fog droplets injected in the inlet ducts. The model is validated experimentally in a wind tunnel.


Author(s):  
Mustapha A. Chaker ◽  
Cyrus B. Meher-Homji ◽  
Thomas Mee

The inlet fogging of gas turbine engines for power augmentation has seen increasing application over the past decade. This paper provides the results of extensive experimental and theoretical studies conducted on impaction pin fog nozzles. It covers the important area of the fog plume pattern of impaction pin nozzles and examines fogplume uniformity. The subject of sprinkle (large droplet formation) from the nozzles is also examined in detail and is shown to be nonsignificant. The effect, on evaporation rate, of ambient climatic conditions and the location of the fog nozzle with respect to the gas turbine inlet duct has been analytically and experimentally analyzed. An Analytical model is used to study the evaporation dynamics of fog droplets injected in the inlet ducts the model is validated experimentally in a wind tunnel.


Author(s):  
Mustapha A. Chaker

Application of inlet air fogging to gas turbine engines for power augmentation, has become common practice, with more than a 1000 installations worldwide including a large number of advanced gas turbines. In this paper an experimental investigation and empirical analysis of key operating parameters on the performance of impaction pin nozzles will be investigated. To this date no such correlation is available for impaction pin nozzles, which are currently used in about 75% of this type of applications. The correlations are developed from a series of experiments conducted in a wind tunnel equipped with the Malvern Spraytec droplet size measurement system. The conducted analysis covered a wide range of the relevant parameters. Mainly the water flow rate from the nozzle orifice was (0.00126 1.s−1 to 0.00063 1.s−1: 0.02 gpm to 0.1 gpm), the operating pressure was (34.5 bars to 204.1 bars: 500 psi to 3000 psi), the airflow velocity was (1.5 m.s−1 to 15.2 m.s−1: 295 fpm to 3000 fpm), the distance between the nozzle orifice and the location of measurement was (0.0127m to 0.508 m: 0.5” to 20”). Other parameters such as the plume spray one angle and the surrounding ambient psychrometric conditions, which may affect the droplet size for impaction pin nozzles is also discussed.


Author(s):  
Esa Utriainen ◽  
Bengt Sundén

For small gas turbines a recuperator is mandatory to achieve high thermal efficiencies, 30 percent and higher. As the recuperator represents 25–30 percent of the overall machine cost, efforts are now being focused on establishing new low cost recuperator concepts for gas turbine engines. In this paper a comparison of four different heat transfer surfaces is performed for a recuperator for a representative 50 kW micro turbine. Two standard methods of comparison, the so-called volume goodness factor and the flow area goodness factor, were used to choose several promising heat transfer surfaces for design calculations of a recuperator heat transfer matrix. Thus a direct comparison of recuperator matrix dimensions, volume and weight is possible for the selected surfaces. The hydraulic diameter is equal for all surfaces thus only their thermohydraulic performances are compared. In this paper details of the heat transfer surface geometries as well as the resulting recuperator matrix dimensions, volumes and weights are presented.


Materials ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4214
Author(s):  
Kranthi Kumar Maniam ◽  
Shiladitya Paul

The increased demand for high performance gas turbine engines has resulted in a continuous search for new base materials and coatings. With the significant developments in nickel-based superalloys, the quest for developments related to thermal barrier coating (TBC) systems is increasing rapidly and is considered a key area of research. Of key importance are the processing routes that can provide the required coating properties when applied on engine components with complex shapes, such as turbine vanes, blades, etc. Despite significant research and development in the coating systems, the scope of electrodeposition as a potential alternative to the conventional methods of producing bond coats has only been realised to a limited extent. Additionally, their effectiveness in prolonging the alloys’ lifetime is not well understood. This review summarises the work on electrodeposition as a coating development method for application in high temperature alloys for gas turbine engines and discusses the progress in the coatings that combine electrodeposition and other processes to achieve desired bond coats. The overall aim of this review is to emphasise the role of electrodeposition as a potential cost-effective alternative to produce bond coats. Besides, the developments in the electrodeposition of aluminium from ionic liquids for potential applications in gas turbines and the nuclear sector, as well as cost considerations and future challenges, are reviewed with the crucial raw materials’ current and future savings scenarios in mind.


Sign in / Sign up

Export Citation Format

Share Document