Design Optimisation of the Graz Cycle Prototype Plant

Author(s):  
H. Jericha ◽  
E. Go¨ttlich ◽  
W. Sanz ◽  
F. Heitmeir

Introduction of closed cycle gas turbines with their capability of retaining combustion generated CO2 can offer a valuable contribution to the Kyoto goal and to future power generation. The use of well established gas turbine technology enhanced by recent research results enables designers even today to present proposals for prototype plants. Research and development work of TTM Institute of Graz University of Technology since the 90’s has lead to the Graz Cycle, a zero emission power cycle of highest efficiency and with most positive features. In this work the design for a prototype plant based on current technology as well as cutting-edge turbomachinery is presented. The object of such a plant shall be the demonstration of operational capabilities and shall lead to the planning and design of much larger units of highest reliability and thermal efficiency.

2004 ◽  
Vol 126 (4) ◽  
pp. 733-740 ◽  
Author(s):  
Herbert Jericha ◽  
Emil Go¨ttlich ◽  
Wolfgang Sanz ◽  
Franz Heitmeir

Introduction of closed-cycle gas turbines with their capability of retaining combustion generated CO2 can offer a valuable contribution to the Kyoto goal and to future power generation. The use of well-established gas turbine technology enhanced by recent research results enables designers even today to present proposals for prototype plants. Research and development work of TTM Institute of Graz University of Technology since the 1990s has lead to the Graz cycle, a zero-emission power cycle of highest efficiency and with most positive features. In this work the design for a prototype plant based on current technology as well as cutting-edge turbomachinery is presented. The object of such a plant shall be the demonstration of operational capabilities and shall lead to the planning and design of much larger units of highest reliability and thermal efficiency.


Author(s):  
F Heitmeir ◽  
H Jericha

Introduction of closed-cycle gas turbines with their capability of retaining combustion-generated CO2 can offer a valuable contribution to the Kyoto goal and to future power generation. Research and development work at Graz University of Technology since the 1990s has led to the so-called Graz cycle, a high-efficiency zero-emission power cycle. In this work the design for a prototype plant based on commercially available technology as well as cutting-edge turbomachinery is presented. The proposed turbomachinery components as well as the combuster are discussed in detail to show the feasibility of a Graz cycle power plant. Finally a first cost estimation is given to show the economics of a Graz cycle power plant.


2006 ◽  
Vol 26 (17-18) ◽  
pp. 2228-2235 ◽  
Author(s):  
Chenhua Gou ◽  
Ruixian Cai ◽  
Guoqiang Zhang

Author(s):  
Muzafar Hussain ◽  
Ahmed Abdelhafez ◽  
Medhat A. Nemitallah ◽  
Mohamed A. Habib

Abstract The stable and flexible micromixer (MM) gas-turbine technology is coupled with hydrogen (H2) enrichment to present an oxy-methane combustor that can sustain highly diluted flames for application in the Allam cycle for zero-emission power production. MMs have never been tested under oxy-fuel conditions, which highlights the novelty of the present study. The operability window was quantified over ranges of fuel hydrogen fraction (HF) and oxidizer oxygen fraction OF. The MM showed superior stability, allowing for reducing OF down to 21% (by vol.) without H2 enrichment, which satisfies the dilution requirements (23%) of the primary reaction zone within the Allam-cycle combustor. By comparison, swirl-based burners from past studies exhibited a ∼30% minimum threshold. Enriching the fuel with H2 boosted flame stability and allowed for reducing OF further down to a record-low value of 13% at HF = 65% (by vol.) in fuel mixture. Under these highly diluted conditions, the adiabatic flame temperature is 990°C (1800°F), which is substantially lower than the lean blowout limit of most known technologies of lean premixed air-fuel combustion in gas-turbine applications. The results also showed that H2 enrichment has minimal effect on the adiabatic flame temperature and combustor power density (MW/m3/atm), which facilitates great operational flexibility in adjusting HF to sustain flame stability without influencing the Allam cycle peak temperature or affecting the turbine health. MM combustion with H2 enrichment is thus a recommended technology for controlled-emission, fuel/oxidizer-flexible combustion in gas turbines.


Author(s):  
G. A. Richards ◽  
K. H. Casleton ◽  
B. T. Chorpening

Concerns about climate change have encouraged significant interest in concepts for zero-emission power generation systems. These systems are intended to produce power without releasing CO2 into the atmosphere. One method to achieve this goal is to produce hydrogen from the gasification of fossil or biomass fuels. Using various membrane and reforming technologies, the carbon in the parent fuel can be shifted to CO2 and removed from the fuel stream, followed by direct CO2 sequestration. The hydrogen fuel can be used directly in gas turbines fitted with low-NO x combustors. A second approach to producing zero-emission power is to replace the nitrogen diluent that accompanies conventional combustion in air with either CO2 or H2O. In this concept, CO2 or H2O is added to oxygen to control combustion temperatures in oxygen-fuel reactions. In the absence of nitrogen, the primary combustion products for any hydrocarbon under lean conditions are then simply CO2 and H2O. Thus, merely cooling the exhaust stream condenses the water and produces an exhaust of pure CO2, ready for sequestration. The dilute oxy-fuel combustion strategy can be incorporated in power cycles that are similar to Brayton or Rankine configurations, using CO2 or H2O as the primary diluent respectively. While the relative merits of the various strategies to zero-emission power are the subject of various technical and economic studies, very little work has focused on defining the combustion issues associated with the dilute oxy-fuel option. In this paper, the expected combustion performance of CO2 and H2O diluted systems are compared. Experimental results from a high-pressure oxy-fuel combustor are also presented.


Author(s):  
W. Sanz ◽  
H. Jericha ◽  
M. Moser ◽  
F. Heitmeir

Introduction of closed cycle gas turbines with their capability of retaining combustion generated CO2 can offer a valuable contribution to the Kyoto goal and to future power generation. Therefore research and development at Graz University of Technology since the 90’s has lead to the Graz Cycle, a zero emission power cycle of highest efficiency. It burns fossil fuels with pure oxygen which enables the cost-effective separation of the combustion CO2 by condensation. The efforts for the oxygen supply in an air separation plant are partly compensated by cycle efficiencies far higher than 60%. In this work a further development, the S-Graz Cycle is presented, which works with a cycle fluid of high steam content. Thermodynamic investigations show efficiencies up to 70% and a net efficiency of 60% including the oxygen supply. For a 100 MW prototype plant the layout of the main turbo-machinery is performed to show the feasibility of all components. Finally, an economic analysis of a S-Graz Cycle power plant is performed showing very low CO2 mitigation costs in the range of 10 $/ton CO2 captured, making this zero emission power plant a promising technology in the case of a future CO2 tax.


2005 ◽  
Vol 127 (4) ◽  
pp. 765-772 ◽  
Author(s):  
Wolfgang Sanz ◽  
Herbert Jericha ◽  
Mathias Moser ◽  
Franz Heitmeir

Introduction of closed-cycle gas turbines with their capability of retaining combustion generated CO2 can offer a valuable contribution to the Kyoto goal and to future power generation. Therefore, research and development at Graz University of Technology since the 1990s has lead to the Graz Cycle, a zero emission power cycle of highest efficiency. It burns fossil fuels with pure oxygen, which enables the cost-effective separation of the combustion CO2 by condensation. The efforts for the oxygen supply in an air separation plant are partly compensated by cycle efficiencies far higher than 60%. In this work a further development, the S-Graz Cycle, which works with a cycle fluid of high steam content, is presented. Thermodynamic investigations show efficiencies up to 70% and a net efficiency of 60%, including the oxygen supply. For a 100 MW prototype plant the layout of the main turbomachinery is performed to show the feasibility of all components. Finally, an economic analysis of a S-Graz Cycle power plant is performed showing very low CO2 mitigation costs in the range of $10/ton CO2 captured, making this zero emission power plant a promising technology in the case of a future CO2 tax.


2020 ◽  
Vol 11 (1) ◽  
pp. 28
Author(s):  
Emmanuel O. Osigwe ◽  
Arnold Gad-Briggs ◽  
Theoklis Nikolaidis

When selecting a design for an unmanned aerial vehicle, the choice of the propulsion system is vital in terms of mission requirements, sustainability, usability, noise, controllability, reliability and technology readiness level (TRL). This study analyses the various propulsion systems used in unmanned aerial vehicles (UAVs), paying particular focus on the closed-cycle propulsion systems. The study also investigates the feasibility of using helium closed-cycle gas turbines for UAV propulsion, highlighting the merits and demerits of helium closed-cycle gas turbines. Some of the advantages mentioned include high payload, low noise and high altitude mission ability; while the major drawbacks include a heat sink, nuclear hazard radiation and the shield weight. A preliminary assessment of the cycle showed that a pressure ratio of 4, turbine entry temperature (TET) of 800 °C and mass flow of 50 kg/s could be used to achieve a lightweight helium closed-cycle gas turbine design for UAV mission considering component design constraints.


Energy Policy ◽  
2009 ◽  
Vol 37 (2) ◽  
pp. 669-679 ◽  
Author(s):  
Andreas Poullikkas ◽  
Ioannis Hadjipaschalis ◽  
Costas Christou

Sign in / Sign up

Export Citation Format

Share Document