Thermoacoustic Modeling and Control of Multi Burner Combustion Systems

Author(s):  
Bruno Schuermans ◽  
Valter Bellucci ◽  
Christian Oliver Paschereit

Thermoacoustic interactions in industrial combustion systems are difficult to model because they involve complex interactions between several physical mechanisms. In order to obtain dynamic models of such systems, a hybrid approach is used: numerical, experimental and analytical techniques are combined to describe the system. The system is modeled as a modular network, where the input–output relation of the modules can be based on analytic models, experimental data or numerical analysis. The modules are represented as state-space realizations. A modal expansion technique is used to obtain a state-space representation of the acoustic propagation through complex 3-dimensional geometries. The modal expansion can be based on an analytic model (for relatively simple volumes), or on a finite element analysis (for geometries of any complexity). Modules that are very complex, such as the acoustic behavior of the combustion process itself, are modeled using a combined experimental and analytic approach. The method is not restricted to symmetries of any kind: configurations with geometrically or operationally different burners are simulated. The state-space network approach allows for time domain simulations, including non-linearities. An active controller has been synthesized for an (hypothetical) annular multi burner combustion system. The controller uses spatial filtering to decompose the acoustic field to its individual modes. The modes are then controlled using an H∞ control algorithm. Time domain simulations of this control system demonstrate the effectiveness of this method, even in the presence of non-linear saturation and parametric errors.

Author(s):  
D. Rouwenhorst ◽  
J. Hermann ◽  
W. Polifke

Thermoacoustic instabilities have the potential to restrict the operability window of annular combustion systems, primarily as a result of azimuthal modes. Azimuthal acoustic modes are composed of counter-rotating wave pairs, which form traveling modes, standing modes, or combinations thereof. In this work, a monitoring strategy is proposed for annular combustors, which accounts for azimuthal mode shapes. Output-only modal identification has been adapted to retrieve azimuthal eigenmodes from surrogate data, resembling acoustic measurements on an industrial gas turbine. Online monitoring of decay rate estimates can serve as a thermoacoustic stability margin, while the recovered mode shapes contain information that can be useful for control strategies. A low-order thermoacoustic model is described, requiring multiple sensors around the circumference of the combustor annulus to assess the dynamics. This model leads to a second-order state-space representation with stochastic forcing, which is used as the model structure for the identification process. Four different identification approaches are evaluated under different assumptions, concerning noise characteristics and preprocessing of the signals. Additionally, recursive algorithms for online parameter identification are tested.


Author(s):  
Reza Taghipour ◽  
Tristan Perez ◽  
Torgeir Moan

This article deals with time-domain hydroelastic analysis of a marine structure. The convolution terms associated with fluid memory effects are replaced by an alternative state-space representation, the parameters of which are obtained by using realization theory. The mathematical model established is validated by comparison to experimental results of a very flexible barge. Two types of time-domain simulations are performed: dynamic response of the initially inert structure to incident regular waves and transient response of the structure after it is released from a displaced condition in still water. The accuracy and the efficiency of the simulations based on the state-space model representations are compared to those that integrate the convolutions.


Author(s):  
Driek Rouwenhorst ◽  
Jakob Hermann ◽  
Wolfgang Polifke

Thermoacoustic instabilities have the potential to restrict the operability window of annular combustion systems, primarily as a result of azimuthal modes. Azimuthal acoustic modes are composed of counter-rotating wave pairs, which form traveling modes, standing modes, or combinations thereof. In this work, a monitoring strategy is proposed for annular combustors that accounts for azimuthal mode shapes. Output-only modal identification has been adapted to retrieve azimuthal eigenmodes from surrogate data, resembling acoustic measurements on an industrial gas turbine. Online monitoring of decay rate estimates can serve as a thermoacoustic stability margin, while the recovered mode shapes contain information that can be useful for control strategies. A low-order thermoacoustic model is described, requiring multiple sensors around the circumference of the combustor annulus to assess the dynamics. This model leads to a second order state space representation with stochastic forcing, which is used as the model structure for the identification process. Four different identification approaches are evaluated under different assumptions, concerning noise characteristics and preprocessing of the signals. Additionally, recursive algorithms for online parameter identification are tested.


Author(s):  
Min Li ◽  
Kok-Meng Lee

This article develops a new human-machine perception interface method to convert visual patterns to accurate eddy-current stimulation using an electromagnet (EM) array. The eddy-current stimulation is formulated as a feedforward controller design. In this paper, a state-space model for the eddy-current stimulation is derived for design and analysis of the controller. Unlike traditional methods where the distributed parameter systems are often modeled using partial differential equations and solved numerically using numerical methods such as finite element analysis, the model presented here offers closed-form solutions in state-space representation. The novel approach enables the applications of the well-established control theory for analyzing the system controllability. The feasibility and accuracy of the feedforward control method are numerically illustrated and validated by generating the stimulation with two types of patterns, which provides an essential base for future research of human-machine perception interface.


2020 ◽  
Vol 35 (12) ◽  
pp. 12686-12701
Author(s):  
Maikel F. Menke ◽  
Joao P. Duranti ◽  
Leandro Roggia ◽  
Fabio E. Bisogno ◽  
Rodrigo V. Tambara ◽  
...  

2005 ◽  
Vol 32 (17-18) ◽  
pp. 2195-2216 ◽  
Author(s):  
Erlend Kristiansen ◽  
Åsmund Hjulstad ◽  
Olav Egeland

Author(s):  
J-C Lee

A hydraulic attenuator has been used in hydraulic active suspension systems of automotive vehicles to reduce high amplitude ripple pressure of a pump. The hydraulic attenuator considered in this study is so highly non-linear and of high order that the analysis in the time domain has been performed infrequently, although the frequency response analysis with the transfer matrix method was applicable. In this paper, a state space representation of the dynamics for a hydraulic attenuator is presented, utilizing the electrical analogy. The results of the experiment are compared with those of the simulation to validate the state space model proposed. The comparison reveals that the state space model proposed is practically applicable for estimating the dynamic responses of the hydraulic attenuator in the time domain.


Sign in / Sign up

Export Citation Format

Share Document