Studies on Bypass Transition of a Boundary Layer Subjected to Localized Periodic External Disturbances

Author(s):  
K. Funazaki ◽  
Y. Wakita ◽  
T. Otsuki

This study aims at clarification of wake-induced bypass transition process of a boundary layer on a flat plate with no pressure gradient. Special attention is paid to inception as well as growth of a turbulent spot created by the incoming wake as an external disturbance. To meet this goal a unique wake generator is invented to create an isolated turbulent spot. A multi-probe sensor with seven single-hot-wire probes is used to measure wake-affected boundary layer. The wake generator consists of a disk, pillars and a very thin wire with a small sphere on it. The sphere on the wire generates periodic wakes behind it when it passes across the main flow in front of the test flat plate. These sphere wakes impinge the flat plate in a spatially and timewisely localized manner so that the wakes periodically leave narrow affected zones inside the boundary layer. The observations confirm that an isolated turbulence spot emerges from each of those wake-affected zones. It is also found that the turbulent spot observed in this study bears a close resemblance to the conventional turbulent spot that takes a shape of arrowhead pointing downstream.

Author(s):  
Ken-ichi Funazaki ◽  
Takahiro Otsuki

This study aims at deepening the understanding of wake-induced bypass transition process of a flat-plate boundary layer using two types of wake generating objects, which are small spheres and thin wires. Main focus is on emergence of isolated turbulent spots from the influence of the wake passage over the boundary layer. Precursors of the wake-induced turbulent spot, which have not been observed in an explicit manner in any other previous studies, are also of concern in this study. It is expected that wakes from the wires are so weak that an isolated turbulent spot may be induced by the wire wake, while the position of the spot emergence varies randomly along the wire. A multi-channel sensor with 7 hot-wire probes acquires the velocity data of the flow over the flat plate subjected to the wake passage. These velocity data reveal the spot shape and spot generation rate. In addition, the existence of Klebanoff mode in this wake-affected boundary layer is examined.


Author(s):  
Keiji Takeuchi ◽  
Susumu Fujimoto ◽  
Eitaro Koyabu ◽  
Tetsuhiro Tsukiji

Wake-induced bypass transition of boundary layers on a flat plate subjected to favorable and adverse pressure gradients was investigated. Detailed boundary layer measurements were conducted using two hot-wire probes. A spoked-wheel-type wake generator was used to create periodic wakes in front of the flat plate. The main focus of this study was to reveal the effect of the Strouhal number, which changed by using different numbers of wake-generating bars, on the turbulence intensity distribution and the transition onset position of the boundary layer on the flat plate using two hot-wire probes.


1996 ◽  
Vol 118 (2) ◽  
pp. 337-344 ◽  
Author(s):  
K. Funazaki

As the second part of the study, detailed hot-wire anemometry measurements of wake-affected boundary layers on the flat plate are made. These measurements are organized in order, first, to check the standpoint of the modeling of the wake-induced transition proposed in Part I, and second, to observe wake–boundary layer interaction in detail from a viewpoint of direct and indirect effect of the wake passage upon turbulent spot generation within the boundary layer, as described by Walker (1993). The validity of the presumed state of the wake-affected boundary layer in the distance–time domain, which constitutes the basis of the transition model, is confirmed to great extent. However, it is also found that the criterion for the onset of the wake-induced transition adopted in Part I should be reconsidered. Some successful attempts are therefore made to specify the transition onset.


1994 ◽  
Author(s):  
K. Funazaki

As the second part of the study, detailed hot-wire anemometry measurements of wake-affected boundary layers on the flat plate are made. These measurements are organized in order, first, to check the standpoint of the modeling of the wake-induced transition proposed in Part I, and second, to observe wake-boundary layer interaction in detail from a viewpoint of direct and indirect effect of the wake passage upon turbulent spot generation within the boundary layer, as described by Walker (1993). The validity of the presumed state of the wake-affected boundary layer in the distance-time domain, which constitutes the basis of the transition model, is confirmed to great extent. However, it is also found that the criterion for the onset of the wake-induced transition adopted in Part I should be reconsidered. Some successful attempts are therefore made to specify the transition onset.


Author(s):  
Seyed Mohammad Hasheminejad ◽  
Hatsari Mitsudharmadi ◽  
S. H. Winoto ◽  
Kim Boon Lua ◽  
Hong Tong Low

The evolution of streamwise counter-rotating vortices induced by different leading edge patterns is investigated quantitatively using hot-wire anemometer. A notched and triangular leading edge with the same wavelength and amplitude were designed to induce streamwise vortices over a flat plate at Reynolds number (based on the wavelength of the leading edge patterns) of 3080 corresponding to free-stream velocity of 3 m/s. The streamwise velocity at different streamwise locations collected and analyzed using a single wire probe hot-wire anemometer showed reveal different characteristics of boundary layer flow due to the presence of these two leading edge patterns. The major difference is the appearance of an additional streamwise vortex between the troughs of the notched pattern. Such vortices increase the mixing effect in the boundary layer as well as the velocity profile.


2020 ◽  
Vol 142 (6) ◽  
Author(s):  
Yousef Kanani ◽  
Sumanta Acharya ◽  
Forrest Ames

Abstract High Reynolds flow over a nozzle guide-vane with elevated inflow turbulence was simulated using wall-resolved large eddy simulation (LES). The simulations were undertaken at an exit Reynolds number of 0.5 × 106 and inflow turbulence levels of 0.7% and 7.9% and for uniform heat-flux boundary conditions corresponding to the measurements of Varty and Ames (2016, “Experimental Heat Transfer Distributions Over an Aft Loaded Vane With a Large Leading Edge at Very High Turbulence Levels,” ASME Paper No. IMECE2016-67029). The predicted heat transfer distribution over the vane is in excellent agreement with measurements. At higher freestream turbulence, the simulations accurately capture the laminar heat transfer augmentation on the pressure surface and the transition to turbulence on the suction surface. The bypass transition on the suction surface is preceded by boundary layer streaks formed under the external forcing of freestream disturbances which breakdown to turbulence through inner-mode secondary instabilities. Underneath the locally formed turbulent spot, heat transfer coefficient spikes and generally follows the same pattern as the turbulent spot. The details of the flow and temperature fields on the suction side are characterized, and first- and second-order statistics are documented. The turbulent Prandtl number in the boundary layer is generally in the range of 0.7–1, but decays rapidly near the wall.


2019 ◽  
Vol 213 ◽  
pp. 02002
Author(s):  
Pavel Antoš ◽  
Sergei Kuznetsov

Boundary layer on a uniformly heated flat plate was studied experimentally. Both, the velocity boundary layer and the temperature boundary layer, was investigated by means of hot-wire anemometry. A probe with parallel wires was used for velocity-temperature measurement. Experiment was performed in the closed-circuit wind tunnel with several levels of heat flux at the wall. The wall temperature was set up in the interval from 20 ºC to 200 ºC.


2012 ◽  
Vol 698 ◽  
pp. 211-234 ◽  
Author(s):  
Jens H. M. Fransson ◽  
Alessandro Talamelli

AbstractA study on the generation and development of high-amplitude steady streamwise streaks in a flat-plate boundary layer is presented. High-amplitude streamwise streaks are naturally present in many bypass transition scenarios, where they play a fundamental role in the breakdown to turbulence process. On the other hand, recent experiments and numerical simulations have shown that stable laminar streamwise streaks of alternating low and high speed are also capable of stabilizing the growth of Tollmien–Schlichting waves as well as localized disturbances and to delay transition. The larger the streak amplitude is, for a prescribed spanwise periodicity of the streaks, the stronger is the stabilizing mechanism. Previous experiments have shown that streaks of amplitudes up to 12 % of the free stream velocity can be generated by means of cylindrical roughness elements. Here we explore the possibility of generating streaks of much larger amplitude by using a row of miniature vortex generators (MVGs) similar to those used in the past to delay or even prevent boundary layer separation. In particular, we present a boundary layer experiment where streak amplitudes exceeding 30 % have been produced without having any secondary instability acting on them. Furthermore, the associated drag with the streaky base flow is quantified, and it is demonstrated that the streaks can be reinforced by placing a second array of MVGs downstream of the first one. In this way it is possible to make the control more persistent in the downstream direction. It must be pointed out that the use of MVGs opens also the possibility to set up a control method that acts twofold in the sense that both transition and separation are delayed or even prevented.


Sign in / Sign up

Export Citation Format

Share Document