Chemical Kinetic Modelling of the Evolution of Gaseous Aerosol Precursors Within a Gas Turbine Engine

Author(s):  
A. R. Clague ◽  
C. W. Wilson ◽  
M. Pourkashanian ◽  
L. Ma

A sequence of kinetic models has been developed to simulate the chemical processes occurring throughout the hot section of a modern gas turbine engine. The work was performed as part of the EU funded PARTEMIS programme, which was designed to investigate the effect of both engine condition and fuel sulphur content on the production of gaseous aerosol precursor such as SO3, H2SO4 and HONO. For the PARTEMIS programme, a Hot End Simulator (HES) was designed to recreate the thermodynamic profile through which the hot gases pass after leaving the combustor. Combustion rig tests were performed in which the concentrations of gaseous product species were measured at the exits of both the combustor and the HES. These measurements were used to validate the kinetic models. The combustor was modelled by a sequence of five perfectly stirred reactors, using the Combustor Model Interface (CMI) developed at the University of Leeds. The CMI allows for the addition of dilution air at each stage of the combustor as well as re-circulation between each stage. The results at the combustor exit were then used as initial boundary conditions for the HES model, which followed the evolution of reacting gases through each of the pressure stages of the HES. This combination of the two models allowed the chemistry occurring throughout an engine, from combustor inlet to turbine exit, to be simulated. The principal aim of this modelling programme was to determine the extent of conversion of the sulphur (IV) species, SO2, to the sulphur (VI) species, SO3 and H2SO4. The predicted level of this conversion at the exit of the HES was found to be in very good agreement with the experimentally measured values. These values were lower than had been previously determined by modelling studies and this was found to result from changes made to the thermodynamic properties of the key intermediate, HOSO2, following recent experimental measurements. The results also showed that for these tests, the predominant sulphur conversion process occurred within the combustor itself rather than the turbine or beyond.

1992 ◽  
Author(s):  
KIRK D ◽  
ANDREW VAVRECK ◽  
ERIC LITTLE ◽  
LESLIE JOHNSON ◽  
BRETT SAYLOR

2013 ◽  
Vol 50 (1) ◽  
pp. 43-49
Author(s):  
A. Neidel ◽  
B. Matijasevic-Lux

2015 ◽  
Vol 52 (6) ◽  
pp. 334-341
Author(s):  
A. Neidel ◽  
Th. Ullrich ◽  
S. Wallich

2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Benny George ◽  
Nagalingam Muthuveerappan

AbstractTemperature probes of different designs were widely used in aero gas turbine engines for measurement of air and gas temperatures at various locations starting from inlet of fan to exhaust gas from the nozzle. Exhaust Gas Temperature (EGT) downstream of low pressure turbine is one of the key parameters in performance evaluation and digital engine control. The paper presents a holistic approach towards life assessment of a high temperature probe housing thermocouple sensors designed to measure EGT in an aero gas turbine engine. Stress and vibration analysis were carried out from mechanical integrity point of view and the same was evaluated in rig and on the engine. Application of 500 g load concept to clear the probe design was evolved. The design showed strength margin of more than 20% in terms of stress and vibratory loads. Coffin Manson criteria, Larsen Miller Parameter (LMP) were used to assess the Low Cycle Fatigue (LCF) and creep life while Goodman criteria was used to assess High Cycle Fatigue (HCF) margin. LCF and HCF are fatigue related damage from high frequency vibrations of engine components and from ground-air-ground engine cycles (zero-max-zero) respectively and both are of critical importance for ensuring structural integrity of engine components. The life estimation showed LCF life of more than 4000 mission reference cycles, infinite HCF life and well above 2000 h of creep life. This work had become an integral part of the health monitoring, performance evaluation as well as control system of the aero gas turbine engine.


Sign in / Sign up

Export Citation Format

Share Document