Large Eddy Simulation of Flow and Heat Transfer in a 90° Ribbed Duct With Rotation: Effect of Coriolis and Centrifugal Buoyancy Forces

Author(s):  
Samer Abdel-Wahab ◽  
Danesh K. Tafti

Results from large eddy simulations (LES) of fully developed flow in a 90° ribbed duct are presented with rib pitch-to-height ratio P/e = 10 and a rib height-to-hydraulic-diameter ratio e/Dh = 0.1. Three rotation numbers Ro = 0.18, 0.36 and 0.68 are studied at a nominal Reynolds number based on bulk velocity of 20,000. Centrifugal buoyancy effects are included at two Richardson numbers of Ri = 12, 28 (Buoyancy number, Bo = 0.12 and 0.30) for each rotation case. Buoyancy strengthens the secondary flow cells in the duct cross-section which leads to an increase of 20% to 30% in heat transfer augmentation at the smooth walls over and above the effect of Coriolis forces. Buoyancy also accentuates the augmentation of turbulence near the trailing wall of the duct and increases the heat transfer augmentation ratio 10% to 20% over the action of Coriolis forces alone. However, it does not have any significant effect at the leading side of the duct. The overall effect of buoyancy on heat transfer augmentation for the ribbed duct is found to be less than 10% over the effect of Coriolis forces alone. Friction on the other hand is augmented 15% to 20% at the highest buoyancy number studied. Comparison with available experiments in the literature show excellent agreement.

2004 ◽  
Vol 126 (4) ◽  
pp. 627-636 ◽  
Author(s):  
Samer Abdel-Wahab ◽  
Danesh K. Tafti

Results from large eddy simulations (LES) of fully developed flow in a 90 deg ribbed duct are presented with rib pitch-to-height ratio P/e=10 and a rib height-to-hydraulic-diameter ratio e/Dh=0.1. Three rotation numbers Ro=0.18, 0.36, and 0.68 are studied at a nominal Reynolds number based on bulk velocity of 20 000. Centrifugal buoyancy effects are included at two Richardson numbers of Ri=12, 28 (Buoyancy parameter, Bo=0.12 and 0.30) for each rotation case. Heat transfer augmentation on the trailing side of the duct due to the action of Coriolis forces alone asymptotes to a value of 3.7±5% by Ro=0.2. On the other hand, augmentation ratios on the leading surface keep decreasing with an increase in rotation number with values ranging from 1.7 at Ro=0.18 to 1.2 at Ro=0.67. Secondary flow cells augment the heat transfer coefficient on the smooth walls by 20% to 30% over a stationary duct. Centrifugal buoyancy further strengthens the secondary flow cells in the duct cross-section which leads to an additional increase of 10% to 15%. Buoyancy also accentuates the augmentation of turbulence near the trailing wall of the duct and increases the heat transfer augmentation ratio 10% to 20% over the action of Coriolis forces alone. However, it does not have any significant effect at the leading side of the duct. The overall effect of buoyancy on heat transfer augmentation for the ribbed duct is found to be less than 10% over the effect of Coriolis forces alone. Friction on the other hand is augmented 15% to 20% at the highest buoyancy number studied. Comparison with available experiments in the literature show excellent agreement.


Author(s):  
Samer Abdel-Wahab ◽  
Danesh K. Tafti

This paper presents results from large eddy simulation (LES) of fully developed flow in a 90° ribbed duct with rib pitch-to-height ratio P/e = 10 and a rib height to hydraulic diameter ratio e/Dh = 0.1. Three rotation numbers Ro = 0.18, 0.35 and 0.67 are studied at a nominal Reynolds number based on bulk velocity of 20,000. Mean flow and turbulent quantities, together with heat transfer and friction augmentation data are presented. Turbulence and heat transfer are augmented on the trailing surface and reduced at the leading surface. The heat transfer augmentation ratio on the trailing surface asymptotes to a value of 3.7 ± 5% and does not show any further increasing trend as the rotation number increases beyond 0.2. On the other hand, augmentation ratios on the leading surface keep decreasing with an increase in rotation number with values ranging from 1.7 at Ro = 0.18 to 1.2 at Ro = 0.67. Secondary flow cells augment the heat transfer coefficient on the smooth walls by 20% to 30% over a stationary duct. An increase in rotation number from 0.35 to 0.67 decreases the frictional losses from an augmentation ratio of 9.6 to 8.75 and is a consequence of decrease in form drag and wall shear. Overall augmentation compared with a non-rotating duct ranges from +15% to +20% for heat transfer, and +10% to +15% for friction over the range of rotation numbers studied. Comparison of heat transfer augmentation with previous experimental results in the literature shows very good agreement.


2008 ◽  
Vol 130 (4) ◽  
Author(s):  
Mohammad A. Elyyan ◽  
Danesh K. Tafti

Large eddy simulation calculations are conducted for flow in a channel with dimples and protrusions on opposite walls with both surfaces heated at three Reynolds numbers, ReH=220, 940, and 9300, ranging from laminar, weakly turbulent, to fully turbulent, respectively. Turbulence generated by the separated shear layer in the dimple and along the downstream rim of the dimple is primarily responsible for heat transfer augmentation on the dimple surface. On the other hand, augmentation on the protrusion surface is mostly driven by flow impingement and flow acceleration between protrusions, while the turbulence generated in the wake has a secondary effect. Heat transfer augmentation ratios of 0.99 at ReH=220,2.9 at ReH=940, and 2.5 at ReH=9300 are obtained. Both skin friction and form losses contribute to pressure drop in the channel. Form losses increase from 45% to 80% with increasing Reynolds number. Friction coefficient augmentation ratios of 1.67, 4.82, and 6.37 are obtained at ReH=220, 940, and 9300, respectively. Based on the geometry studied, it is found that dimples and protrusions may not be viable heat transfer augmentation surfaces when the flow is steady and laminar.


Author(s):  
Samer Abdel-Wahab ◽  
Danesh K. Tafti

Results from large eddy simulation (LES) of fully developed flow in a staggered 45° ribbed duct are presented with rib pitch-to-height ratio P/e = 10 and a rib height to hydraulic diameter ratio e/Dh = 0.1. The nominal Reynolds number based on bulk velocity is 47,300. Mean flow and turbulent quantities, together with heat transfer and friction augmentation results are presented. The flow is characterized by a helical vortex behind each rib and a complementary cross-sectional secondary flow, both of which result from the angle of the rib with respect to the mean flow. Averaged velocity profiles at the duct center show excellent agreement with experiments and heat transfer predictions agree well with experiments. Turbulent kinetic energy, shear stress, and heat transfer augmentation ratios show a strong correlation to the rib vortex and the secondary flow. Overall, heat transfer is augmented by a factor of 2.3 compared with a smooth duct and matches experimental data within 2%.


Author(s):  
M. Elyyan ◽  
A. Rozati ◽  
D. K. Tafti

Flow field and heat transfer for parallel fins with dimples and protrusions are predicted with large-eddy simulations at a nominal Reynolds number based on fin pitch of 15,000. Dimple and protrusion depth and imprint diameter to channel height ratio are 0.4 and 2.0, respectively. The results show that on the dimple side, the flow and heat transfer is dominated by unsteady vorticity generated and ejected out by the separated shear layer in the dimple. The high turbulent energy which results from the unsteady dynamics is mostly responsible for heat transfer augmentation on the dimple side. A maximum augmentation of about 4 occurs in the reattachment zone of the dimple and immediately downstream of it. On the protrusion side, however, the augmentation in heat transfer is dominated by flow impingement at the front of the protrusion, which results in a maximum augmentation of 5.2. The overall heat transfer and friction coefficient augmentations of 2.34 and 6.35 are calculated for this configuration. Pressure drag from the dimple cavity and protrusion contribute 82% of the total pressure drop.


Author(s):  
Aroon K. Viswanathan ◽  
Danesh K. Tafti

This paper concerns itself with investigating the effect of rotation on flow and heat transfer in a 45° ribbed square duct. Large-Eddy Simulations (LES) are used to investigate why rotation does not have any effect on heat transfer augmentation unlike 90 degree ribs, in which considerable changes are observed in augmentation at the trailing and leading walls of the duct. It is found that unlike 90 degree ribbed ducts, in which the heat transfer augmentation is strongly dependent on streamwise momentum, spanwise momentum dominates heat transfer in skewed ribs. Since Coriolis forces under orthogonal rotation about the z-axis do not directly contribute to spanwise momentum, they do not have as much of an effect on heat transfer at the ribbed walls at the trailing and leading sides. However, because of the augmentation of turbulence at the trailing side, the vortices which are produced in the separated shear layer of the rib and which move from the inside to the outside of the duct, break down and diffuse before they can impinge on the outer wall. Turbulence attenuation at the leading wall has the opposite effect which allows the vortices to maintain their coherence and impinge on the outer wall. This effect taken together with the streamwise flow being pushed to the leading side, produces an extended region of high heat transfer at the outer wall near the leading side. This is countered by lower heat transfer at the trailing side of the outer wall. Hence, although local variations are present due to rotation, the overall augmentation remains the same.


Author(s):  
Evan A. Sewall ◽  
Danesh K. Tafti

This study focuses on a Large Eddy Simulation (LES) of the entrance region of a gas turbine blade internal cooling duct. The square channel is fitted with in-line turbulators orthogonal to the flow. The rib height-to-hydraulic diameter ratio (e/Dh) is 0.1, and the rib pitch-to-rib height ratio (P/e) is 10. A constant temperature boundary condition is imposed on the walls and the ribs; the flow Reynolds number is 20,000; and the rotation number is 0.3. Results from these calculations indicate that flow development length is much longer than in a stationary channel because of the large effect of rotational Coriolis forces on mean flow and heat transfer, which only begin to exert a substantial influence after 3 to 4 rib pitches from the entrance to the duct. During the development length, heat transfer augmentation increases on the trailing and smooth walls, while it decreases on the leading wall. At the ninth rib, the mean augmentation ratios are to within −12% and −14% of their fully developed values on the trailing and smooth walls, respectively. At both walls there is a gradual increasing trend which suggests that fully developed conditions have not been achieved by the heat transfer coefficient. On the leading wall, however, all results indicate that the heat transfer coefficient has achieved its fully developed augmentation ratio. The calculation clearly shows that the direct effect of Coriolis forces on turbulent structure and intensity have a much stronger effect on heat transfer augmentation than the effect of secondary flows.


2021 ◽  
Vol 11 (15) ◽  
pp. 7167
Author(s):  
Liang Xu ◽  
Xu Zhao ◽  
Lei Xi ◽  
Yonghao Ma ◽  
Jianmin Gao ◽  
...  

Swirling impinging jet (SIJ) is considered as an effective means to achieve uniform cooling at high heat transfer rates, and the complex flow structure and its mechanism of enhancing heat transfer have attracted much attention in recent years. The large eddy simulation (LES) technique is employed to analyze the flow fields of swirling and non-swirling impinging jet emanating from a hole with four spiral and straight grooves, respectively, at a relatively high Reynolds number (Re) of 16,000 and a small jet spacing of H/D = 2 on a concave surface with uniform heat flux. Firstly, this work analyzes two different sub-grid stress models, and LES with the wall-adapting local eddy-viscosity model (WALEM) is established for accurately predicting flow and heat transfer performance of SIJ on a flat surface. The complex flow field structures, spectral characteristics, time-averaged flow characteristics and heat transfer on the target surface for the swirling and non-swirling impinging jets are compared in detail using the established method. The results show that small-scale recirculation vortices near the wall change the nearby flow into an unstable microwave state, resulting in small-scale fluctuation of the local Nusselt number (Nu) of the wall. There is a stable recirculation vortex at the stagnation point of the target surface, and the axial and radial fluctuating speeds are consistent with the fluctuating wall temperature. With the increase in the radial radius away from the stagnation point, the main frequency of the fluctuation of wall temperature coincides with the main frequency of the fluctuation of radial fluctuating velocity at x/D = 0.5. Compared with 0° straight hole, 45° spiral hole has a larger fluctuating speed because of speed deflection, resulting in a larger turbulence intensity and a stronger air transport capacity. The heat transfer intensity of the 45° spiral hole on the target surface is slightly improved within 5–10%.


2011 ◽  
Vol 134 (3) ◽  
Author(s):  
Mohammad A. Elyyan ◽  
Danesh K. Tafti

Large-eddy simulations are used to investigate Coriolis forces effect on flow structure and heat transfer in a rotating dimpled channel. Two geometries with two dimple depths are considered, δ=0.2 and 0.3 of channel height, for a wide range of rotation number, Rob=0.0–0.70, based on mean bulk velocity and channel height. It is found that the turbulent flow is destabilized near the trailing side and stabilized near the leading side, with secondary flow structures generated in the channel under the effect of Coriolis forces. Higher heat transfer levels are obtained at the trailing surface of the channel, especially in regions of flow reattachment and boundary layer regeneration at the dimple surface. Coriolis forces showed a stronger effect on the flow structure for the shallow dimple geometry (δ=0.2) compared with the deeper dimple where the growth and shrinkage of the flow recirculation zone in the dimple cavity with rotation were more pronounced than the deep dimple geometry (δ=0.3). Under the action of rotation, heat transfer augmentation increased by 57% for δ=0.2 and by 70% for δ=0.3 on the trailing side and dropped by 50% for δ=0.2 and by 45% for δ=0.3 on the leading side from that of the stationary case.


Sign in / Sign up

Export Citation Format

Share Document