A Contribution to the Abrasive Effect of Particles in a Gas Turbine Pre-Swirl Cooling Air System

Author(s):  
O. Schneider ◽  
F.-K. Benra ◽  
H. J. Dohmen ◽  
K. Jarzombek

With the increase of cooling air passing through the internal air system of modern gas turbines, a greater number of airborne particles is transported to the film cooling holes in the turbine blade surface. In spite of their small size, these holes are critical for airflow and must be free of blockage. A test rig has been designed to study the quantity of separated particles at various critical areas of the internal air system. Former publications for this conference gave detailed insight into the test rig, the flow structure and the particle motion during separation. The process of separation generates abrasion on the rotating and stationary parts of the system. When considering service and maintenance or even unexpected operation faults of the gas turbine, it is important to know the location and abrasion rate of these critical areas. The flow structure within the pre-swirl cooling air system results in locally focused abrasion regions, which are investigated in this paper. New simulations, taking additional physical effects into account, are discussed in the paper. The simulation results are compared to results obtained by measurements and observations within the test rig. Qualitative and quantitative results show the ability to predict the quantity of abrasion during operation on various critical areas of the system.

Author(s):  
O. Schneider ◽  
H. J. Dohmen ◽  
A. W. Reichert

For further improvements in efficiency and performance a better understanding of the internal cooling air system of gas turbines, which provides the turbine rotor blades with cooling air, is necessary. With the increase of cooling air passing through the internal air system, a greater amount of air borne particles are transported to the film cooling holes at the turbine blade surface. In spite of their small size, these holes are critical for blade cooling. Blockage of only a few holes could have harmful effects on the cooling film surrounding the blade. As a result, a reduced mean time between maintenance or even unexpected operation faults of the gas turbine during operation occurs. With a new test rig, the behaviour of particles in the internal cooling air system could be investigated at realistic flow conditions compared to a modern, real world gas turbine. It is possible to simulate different particle sizes and dust concentrations in the coolant air. A first comparison of design expectations and measurements, showing the behaviour of air borne particles in the internal cooling air system under realistic environmental conditions is given in the paper. Further the design tools for nearly a full internal air system flow path could be validated with this new test rig.


Author(s):  
O. Schneider ◽  
H. J. Dohmen ◽  
F.-K. Benra ◽  
D. Brillert

Improvements in efficiency and performance of gas turbines require a better understanding of the internal cooling air system which provides the turbine blades with cooling air. With the increase of cooling air passing through the internal air system, a greater amount of air borne particles is transported to the film cooling holes at the turbine blade surface. In spite of their small size, these holes are critical for blockage. Blockage of only a few holes could have harmful effects on the cooling film surrounding the blade. As a result, a reduced mean time between maintenance or even unexpected operation faults of the gas turbine during operation could occure. Experience showed a complex interaction of cooling air under different flow conditions and its particle load. To get more familiar with all these influences and the system itself, a test rig has been built. With this test rig, the behaviour of particles in the internal cooling air system could be studied at realistic flow conditions compared to a modern, heavy duty gas turbine. It is possible to simulate different particle sizes and dust concentrations in the coolant air. The test rig has been designed to give information about the quantity of separated particles at various critical areas of the internal air system [1]. The operation of the test rig as well as analysis of particles in such a complex flow system bear many problems, addressed in the previous paper [1]. New measurements and analysis methods give new and more accurate results, which will be shown in this paper. Furthermore the inspection of the test rig shows dust deposits at unexpected positions of the flow path. Theoretical studies to characterize the flow behaviour of the disperse phase in a continuous fluid using Lagrangian Tracking were also performed. A comparison between the numerical solution and the measurements will be shown in the paper.


Author(s):  
O. Schneider ◽  
H. J. Dohmen ◽  
F.-K. Benra ◽  
D. Brillert

With the increase of cooling air passing through the internal air system of modern gas turbines, a greater amount of air borne particles is transported to the film cooling holes at the turbine blade surface. In spite of their small size, these holes are critical for blockage. A test rig has been designed to give information about the quantity of separated particles at various critical areas of the internal air system. With this test rig, the behavior of particles in the internal cooling air system could be studied at realistic flow conditions compared to a modern, heavy duty gas turbine. It is possible to simulate different particle sizes and dust concentrations in the coolant air. Numerical studies to characterize the flow behavior of the disperse phase in a continuous fluid using Lagrange Tracking were performed. The main influencing parameters, which are the mass flow through the system, the rotor speed and the nozzle angle of the pre-swirl generator, were varied. Furthermore to validate the theoretical studies, based on the presented variations a special point of operation was selected to get a comparable measurement, which is presented in the paper. Comparison between simulation and measurement shows additional influences of the particle shape, which were discussed. The resulting enhanced model and the comparison to the measurement is presented in the paper.


Author(s):  
A. W. Reichert ◽  
M. Janssen

Siemens heavy duty Gas Turbines have been well known for their high power output combined with high efficiency and reliability for more than 3 decades. Offering state of the art technology at all times, the requirements concerning the cooling and sealing air system have increased with technological development over the years. In particular the increase of the turbine inlet temperature and reduced NOx requirements demand a highly efficient cooling and sealing air system. The new Vx4.3A family of Siemens gas turbines with ISO turbine inlet temperatures of 1190°C in the power range of 70 to 240 MW uses an effective film cooling technique for the turbine stages 1 and 2 to ensure the minimum cooling air requirement possible. In addition, the application of film cooling enables the cooling system to be simplified. For example, in the new gas turbine family no intercooler and no cooling air booster for the first turbine vane are needed. This paper deals with the internal air system of Siemens gas turbines which supplies cooling and sealing air. A general overview is given and some problems and their technical solutions are discussed. Furthermore a state of the art calculation system for the prediction of the thermodynamic states of the cooling and sealing air is introduced. The calculation system is based on the flow calculation package Flowmaster (Flowmaster International Ltd.), which has been modified for the requirements of the internal air system. The comparison of computational results with measurements give a good impression of the high accuracy of the calculation method used.


Author(s):  
Ioanna Aslanidou ◽  
Budimir Rosic ◽  
Vasudevan Kanjirakkad ◽  
Sumiu Uchida

The remarkable developments in gas turbine materials and cooling technologies have allowed a steady increase in combustor outlet temperature and hence in gas turbine efficiency over the last half century. However, the efficiency benefits of higher gas temperature, even at the current levels, are significantly offset by the increased losses associated with the required cooling. Additionally, the advancements in gas turbine cooling technology have introduced considerable complexities into turbine design and manufacture. Therefore, a reduction in coolant requirements for the current gas temperature levels is one possible way for gas turbine designers to achieve even higher efficiency levels. The leading edges of the first turbine vane row are exposed to high heat loads. The high coolant requirements and geometry constraints limit the possible arrangement of the multiple rows of film cooling holes in the so called showerhead region. In the past, investigators have tested many different showerhead configurations, varying the number of rows, inclination angle and shape of the cooling holes. However the current leading edge cooling strategies using showerheads have not been shown to allow further increase in turbine temperature without excessive use of coolant air. Therefore new cooling strategies for the first vane have to be explored. In gas turbines with multiple combustor chambers around the annulus, the transition duct walls can be used to shield, i.e. to protect the first vane leading edges from the high heat loads. In this way the stagnation region at the leading edge and the shower-head of film cooling holes can be completely removed, resulting in a significant reduction in the total amount of cooling air that is otherwise required. By eliminating the showerhead the shielding concept significantly simplifies the design and lowers the manufacturing costs. This paper numerically analyses the potential of the leading edge shielding concept for cooling air reduction. The vane shape was modified to allow for the implementation of the concept and non-restrictive relative movement between the combustor and the vane. It has been demonstrated that the coolant flow that was originally used for cooling the combustor wall trailing edge and a fraction of the coolant air used for the vane showerhead cooling can be used to effectively cool both the suction and the pressure surfaces of the vane.


Author(s):  
O. Schneider ◽  
H. J. Dohmen ◽  
F.-K. Benra ◽  
D. Brillert

Improvements in efficiency and performance of gas turbines require a better understanding of the internal cooling air system which provides the turbine blades with cooling air. With the increase of cooling air passing through the internal air system, a greater amount of air borne particles is transported to the film cooling holes at the turbine blade surface. In spite of their small size, these holes are critical for blockage. Blockage of only a few holes could have harmful effects on the cooling film surrounding the blade. As a result, a reduced mean time between maintenance or even unexpected operation faults of the gas turbine during operation could occur. Experience showed a complex interaction of cooling air under different flow conditions and its particle load. To get more familiar with all these influences and the system itself, a test rig has been built. With this test rig, the behavior of particles in the internal cooling air system can be studied at realistic flow conditions compared to a modern, heavy duty gas turbine. It is possible to simulate different particle sizes and dust concentrations in the coolant air. The test rig has been designed to give information about the quantity of separated particles at various critical areas of the internal air system [1]. The operation of the test rig as well as analysis of particles in such a complex flow system bear many problems, addressed in previous papers [1,2,3]. New theoretical studies give new and more accurate results, compared to the measurements. Furthermore the inspection of the test rig showed dust deposits at unexpected positions of the flow path, which will be discussed by numerical analysis.


2012 ◽  
Vol 135 (2) ◽  
Author(s):  
Ioanna Aslanidou ◽  
Budimir Rosic ◽  
Vasudevan Kanjirakkad ◽  
Sumiu Uchida

The remarkable developments in gas turbine materials and cooling technologies have allowed a steady increase in combustor outlet temperature and, hence, in gas turbine efficiency over the last half century. However, the efficiency benefits of higher gas temperature, even at the current levels, are significantly offset by the increased losses associated with the required cooling. Additionally, the advancements in gas turbine cooling technology have introduced considerable complexities into turbine design and manufacture. Therefore, a reduction in coolant requirements for the current gas temperature levels is one possible way for gas turbine designers to achieve even higher efficiency levels. The leading edges of the first turbine vane row are exposed to high heat loads. The high coolant requirements and geometry constraints limit the possible arrangement of the multiple rows of film cooling holes in the so-called showerhead region. In the past, investigators have tested many different showerhead configurations by varying the number of rows, inclination angle, and shape of the cooling holes. However, the current leading edge cooling strategies using showerheads have not been shown to allow a further increase in turbine temperature without the excessive use of coolant air. Therefore, new cooling strategies for the first vane have to be explored. In gas turbines with multiple combustor chambers around the annulus, the transition duct walls can be used to shield, i.e., to protect, the first vane leading edges from the high heat loads. In this way, the stagnation region at the leading edge and the showerhead of film cooling holes can be completely removed, resulting in a significant reduction in the total amount of cooling air that is otherwise required. By eliminating the showerhead the shielding concept significantly simplifies the design and lowers the manufacturing costs. This paper numerically analyzes the potential of the leading edge shielding concept for cooling air reduction. The vane shape was modified to allow for the implementation of the concept and nonrestrictive relative movement between the combustor and the vane. It has been demonstrated that the coolant flow that was originally used for cooling the combustor wall trailing edge and a fraction of the coolant air used for the vane showerhead cooling can be used to effectively cool both the suction and the pressure surfaces of the vane.


Author(s):  
O. Schneider ◽  
H. J. Dohmen ◽  
F. K. Benra ◽  
K. Jarzombek

In the last years the leading manufacturers enhanced the performance of heavy-duty gas turbines rapidly. With the increasing amount of cooling air passing the internal air system, a rising amount of air borne particles are transported to the film cooling holes at the turbine blade surface. Due to the size, these holes are critical for blockage. Experience with gas turbines during operation showed a complex interaction of cooling air under different flow conditions and its particle load. In this paper the results of a new Lagrange-Tracking simulation algorithm based on 3D-Navier-Stokes flow solution are shown for the first time. Compared to previously shown simulations the algorithm is enhanced by models, taking additional, relevant physical effects into account. The new simulation results are compared to experimental results and former simulations.


Author(s):  
Leo R. Burgett ◽  
Tim Mercer

Fuel oil nozzle coking has been a continuing problem for operators of gas turbine power plants. Over the years, several “solutions” to eliminate the coking of the fuel oil have been implemented to improve plant reliability and availability. When the fuel oil nozzle is “coked”, the startup and operation of the gas turbine are impaired and an unscheduled outage is needed to clean the fuel oil nozzle. In 1997, a project was initiated to investigate the coking problem as it affects the operation of the dual fuel burner of the ABB ALSTOM POWER Inc. GT11N1 single burner (SBK) gas turbine. The GT11N1 SBK fuel oil nozzle (see FIGURE 1) was failing to operate properly because of “coked” fuel oil residue on its internal components (stationary and moveable). ABB ALSTOM POWER Inc. teamed with Savannah Electric & Power Company and collected data that indicated adequate nozzle cooling air could reduce the rate of fuel oil coking. A nozzle cooling air system modification was installed on one of the ABB ALSTOM POWER Inc. 11N1 gas turbines at the Savannah Electric & Power Company McIntosh Power Plant. The modification included an AC motor driven air blower to provide cooling air to the fuel oil nozzle after shutdown of the gas turbine. Inspection of the components inside the fuel oil nozzle showed that very little fuel oil oxidation had occurred inside the nozzle during the three-month test period. By improving the fuel oil nozzle cooling air system, the coking problem can be better managed.


Author(s):  
Karsten Kusterer ◽  
Nurettin Tekin ◽  
Frederieke Reiners ◽  
Dieter Bohn ◽  
Takao Sugimoto ◽  
...  

In modern gas turbines, the film cooling technology is essential for the protection of the hot parts, in particular of the first stage vanes and blades of the turbine, against the hot gases from the combustion process in order to reach an acceptable life span of the components. As the cooling air is usually extracted from the compressor, the reduction of the cooling effort would directly result to an increased thermal efficiency of the gas turbine. Understanding of the fundamental physics of film cooling is necessary for the improvement of the state-of-the-art. Thus, huge research efforts by industry as well as research organizations have been undertaken to establish high efficient film cooling technologies. It is a today common knowledge that film cooling effectiveness degradation is caused by secondary flows inside the cooling jets, i.e. the Counter-Rotating Vortices (CRV) or sometimes also mentioned as kidney-vortices, which induce a lift-off of the jet. Further understanding of the secondary flow development inside the jet and how this could be influenced, has led to hole configurations, which can induce Anti-Counter-Rotating Vortices (ACRV) in the cooling jets. As a result, the cooling air remains close to the wall and is additionally distributed flatly along the surface. Beside different other technologies, the NEKOMIMI cooling technology is a promising approach to establish the desired ACRV. It consists of a combination of two holes in just one configuration so that the air is distributed mainly on two cooling air streaks following the special shape of the generated geometry. The original configuration was found to be difficult for manufacturing even by advanced manufacturing processes. Thus, the improvement of this configuration has been reached by a set of geometry parameters, which lead to configurations much easier to be manufactured but preserving the principle of the NEKOMIMI technology. Within a numerical parametric study several advanced configurations have been obtained and investigated under ambient air flow conditions similar to conditions for a wind tunnel test rig. By systematic variation of the parameters a further optimization with respect to highest film cooling effectiveness has been performed. A set of most promising configurations has been also investigated experimentally in the test rig. The best configuration outperforms the basic configuration by 17% regarding the overall averaged adiabatic film cooling effectiveness under the experimental conditions.


Sign in / Sign up

Export Citation Format

Share Document