Leading Edge Shielding Concept in Gas Turbines With Can Combustors

Author(s):  
Ioanna Aslanidou ◽  
Budimir Rosic ◽  
Vasudevan Kanjirakkad ◽  
Sumiu Uchida

The remarkable developments in gas turbine materials and cooling technologies have allowed a steady increase in combustor outlet temperature and hence in gas turbine efficiency over the last half century. However, the efficiency benefits of higher gas temperature, even at the current levels, are significantly offset by the increased losses associated with the required cooling. Additionally, the advancements in gas turbine cooling technology have introduced considerable complexities into turbine design and manufacture. Therefore, a reduction in coolant requirements for the current gas temperature levels is one possible way for gas turbine designers to achieve even higher efficiency levels. The leading edges of the first turbine vane row are exposed to high heat loads. The high coolant requirements and geometry constraints limit the possible arrangement of the multiple rows of film cooling holes in the so called showerhead region. In the past, investigators have tested many different showerhead configurations, varying the number of rows, inclination angle and shape of the cooling holes. However the current leading edge cooling strategies using showerheads have not been shown to allow further increase in turbine temperature without excessive use of coolant air. Therefore new cooling strategies for the first vane have to be explored. In gas turbines with multiple combustor chambers around the annulus, the transition duct walls can be used to shield, i.e. to protect the first vane leading edges from the high heat loads. In this way the stagnation region at the leading edge and the shower-head of film cooling holes can be completely removed, resulting in a significant reduction in the total amount of cooling air that is otherwise required. By eliminating the showerhead the shielding concept significantly simplifies the design and lowers the manufacturing costs. This paper numerically analyses the potential of the leading edge shielding concept for cooling air reduction. The vane shape was modified to allow for the implementation of the concept and non-restrictive relative movement between the combustor and the vane. It has been demonstrated that the coolant flow that was originally used for cooling the combustor wall trailing edge and a fraction of the coolant air used for the vane showerhead cooling can be used to effectively cool both the suction and the pressure surfaces of the vane.

2012 ◽  
Vol 135 (2) ◽  
Author(s):  
Ioanna Aslanidou ◽  
Budimir Rosic ◽  
Vasudevan Kanjirakkad ◽  
Sumiu Uchida

The remarkable developments in gas turbine materials and cooling technologies have allowed a steady increase in combustor outlet temperature and, hence, in gas turbine efficiency over the last half century. However, the efficiency benefits of higher gas temperature, even at the current levels, are significantly offset by the increased losses associated with the required cooling. Additionally, the advancements in gas turbine cooling technology have introduced considerable complexities into turbine design and manufacture. Therefore, a reduction in coolant requirements for the current gas temperature levels is one possible way for gas turbine designers to achieve even higher efficiency levels. The leading edges of the first turbine vane row are exposed to high heat loads. The high coolant requirements and geometry constraints limit the possible arrangement of the multiple rows of film cooling holes in the so-called showerhead region. In the past, investigators have tested many different showerhead configurations by varying the number of rows, inclination angle, and shape of the cooling holes. However, the current leading edge cooling strategies using showerheads have not been shown to allow a further increase in turbine temperature without the excessive use of coolant air. Therefore, new cooling strategies for the first vane have to be explored. In gas turbines with multiple combustor chambers around the annulus, the transition duct walls can be used to shield, i.e., to protect, the first vane leading edges from the high heat loads. In this way, the stagnation region at the leading edge and the showerhead of film cooling holes can be completely removed, resulting in a significant reduction in the total amount of cooling air that is otherwise required. By eliminating the showerhead the shielding concept significantly simplifies the design and lowers the manufacturing costs. This paper numerically analyzes the potential of the leading edge shielding concept for cooling air reduction. The vane shape was modified to allow for the implementation of the concept and nonrestrictive relative movement between the combustor and the vane. It has been demonstrated that the coolant flow that was originally used for cooling the combustor wall trailing edge and a fraction of the coolant air used for the vane showerhead cooling can be used to effectively cool both the suction and the pressure surfaces of the vane.


Author(s):  
O. Schneider ◽  
F.-K. Benra ◽  
H. J. Dohmen ◽  
K. Jarzombek

With the increase of cooling air passing through the internal air system of modern gas turbines, a greater number of airborne particles is transported to the film cooling holes in the turbine blade surface. In spite of their small size, these holes are critical for airflow and must be free of blockage. A test rig has been designed to study the quantity of separated particles at various critical areas of the internal air system. Former publications for this conference gave detailed insight into the test rig, the flow structure and the particle motion during separation. The process of separation generates abrasion on the rotating and stationary parts of the system. When considering service and maintenance or even unexpected operation faults of the gas turbine, it is important to know the location and abrasion rate of these critical areas. The flow structure within the pre-swirl cooling air system results in locally focused abrasion regions, which are investigated in this paper. New simulations, taking additional physical effects into account, are discussed in the paper. The simulation results are compared to results obtained by measurements and observations within the test rig. Qualitative and quantitative results show the ability to predict the quantity of abrasion during operation on various critical areas of the system.


2014 ◽  
Vol 971-973 ◽  
pp. 143-147 ◽  
Author(s):  
Ping Dai ◽  
Shuang Xiu Li

The development of a new generation of high performance gas turbine engines requires gas turbines to be operated at very high inlet temperatures, which are much higher than the allowable metal temperatures. Consequently, this necessitates the need for advanced cooling techniques. Among the numerous cooling technologies, the film cooling technology has superior advantages and relatively favorable application prospect. The recent research progress of film cooling techniques for gas turbine blade is reviewed and basic principle of film cooling is also illustrated. Progress on rotor blade and stationary blade of film cooling are introduced. Film cooling development of leading-edge was also generalized. Effect of various factor on cooling effectiveness and effect of the shape of the injection holes on plate film cooling are discussed. In addition, with respect to progress of discharge coefficient is presented. In the last, the future development trend and future investigation direction of film cooling are prospected.


2008 ◽  
Vol 130 (4) ◽  
Author(s):  
N. Sundaram ◽  
K. A. Thole

The endwall of a first-stage vane experiences high heat transfer and low adiabatic effectiveness levels because of high turbine operating temperatures and formation of leading edge vortices. These vortices lift the coolant off the endwall and pull the hot mainstream gases toward it. The region of focus for this study is the vane-endwall junction region near the stagnation location where cooling is very difficult. Two different film-cooling hole modifications, namely, trenches and bumps, were evaluated to improve the cooling in the leading edge region. This study uses a large-scale turbine vane cascade with a single row of axial film-cooling holes at the leading edge of the vane endwall. Individual hole trenches and row trenches were placed along the complete row of film-cooling holes. Two-dimensional semi-elliptically shaped bumps were also evaluated by placing the bumps upstream and downstream of the film-cooling row. Tests were carried out for different trench depths and bump heights under varying blowing ratios. The results indicated that a row trench placed along the row of film-cooling holes showed a greater enhancement in adiabatic effectiveness levels when compared to individual hole trenches and bumps. All geometries considered produced an overall improvement to adiabatic effectiveness levels.


Author(s):  
A. W. Reichert ◽  
M. Janssen

Siemens heavy duty Gas Turbines have been well known for their high power output combined with high efficiency and reliability for more than 3 decades. Offering state of the art technology at all times, the requirements concerning the cooling and sealing air system have increased with technological development over the years. In particular the increase of the turbine inlet temperature and reduced NOx requirements demand a highly efficient cooling and sealing air system. The new Vx4.3A family of Siemens gas turbines with ISO turbine inlet temperatures of 1190°C in the power range of 70 to 240 MW uses an effective film cooling technique for the turbine stages 1 and 2 to ensure the minimum cooling air requirement possible. In addition, the application of film cooling enables the cooling system to be simplified. For example, in the new gas turbine family no intercooler and no cooling air booster for the first turbine vane are needed. This paper deals with the internal air system of Siemens gas turbines which supplies cooling and sealing air. A general overview is given and some problems and their technical solutions are discussed. Furthermore a state of the art calculation system for the prediction of the thermodynamic states of the cooling and sealing air is introduced. The calculation system is based on the flow calculation package Flowmaster (Flowmaster International Ltd.), which has been modified for the requirements of the internal air system. The comparison of computational results with measurements give a good impression of the high accuracy of the calculation method used.


Author(s):  
N. Sundaram ◽  
K. A. Thole

The endwall of a first stage vane experiences high heat transfer and low adiabatic effectiveness levels because of high turbine operating temperatures and formation of leading edge vortices. These vortices lift the coolant off the endwall and pull the hot mainstream gases towards it. The region of focus for this study is the vane-endwall junction region near the stagnation location where cooling is very difficult. Two different film-cooling hole modifications, namely trenches and bumps, were evaluated to improve the cooling in the leading edge region. This study uses a large-scale turbine vane cascade with a single row of axial film-cooling holes at the leading edge of the vane endwall. Individual hole trenches and row trenches were placed along the complete row of film-cooling holes. Two-dimensional semi-elliptically shaped bumps were also evaluated by placing the bumps upstream and downstream of the film-cooling row. Tests were carried out for different trench depths and bump heights under varying blowing ratios. The results indicated that a row trench placed along the row of film-cooling holes showed a greater enhancement in adiabatic effectiveness levels when compared to individual hole trenches and bumps. All geometries considered produced an overall improvement to adiabatic effectiveness levels.


Author(s):  
Kirill A. Vinogradov ◽  
Gennady V. Kretinin ◽  
Kseniya V. Otryahina ◽  
Roman A. Didenko ◽  
Dmitry V. Karelin ◽  
...  

Constant rise of hot gas temperature is crucial for the creation of modern gas-turbines engines requiring considerable improvement of cooling configurations. A high pressure turbine blade is one of the most crucial and loaded details in gas-turbine engines. A HPT blade is affected by different operational deviations: stochastic fluctuations of inlet parameters and difference in operational parameters for manufactured engines. Combination of these factors makes the task of uncertainty quantification and robust optimization of the HPT blade relevant in modern science. The authors make an attempt to implement robust optimization to the HPT blade of the gas-turbine engine. The two most important areas of the cooling blade (the leading edge (LE) and the blade tip) were taken into account. The operational and the aleatoric uncertainties were analyzed. These uncertainties represent the fluctuations in the operational parameters and the random-unknown conditions such as the boundary values and or geometrical variations. Industrial HPT blade with a serpentary cooling system and film cooling at the LE was considered. Results of many engine tests were applied to construct probability density function distributions for operational uncertainties. More than 100 real gas-turbines were examined. The following operational uncertainties were reviewed: inlet hot gas pressure and temperature together with cooling air pressure. The tip gap was used as geometrical variation. Conjugate Heat Transfer computations were carried out for the temperature distribution obtained. Geometrical variations of the LE film cooling rows and the tip gap are variables in the robust optimization process. The authors developed a special technology for full parameterization of the LE film-cooling rows only by two parameters. A surrogate model technique (the response surface and the Monte-Carlo method) was applied for the uncertainty quantification and the robust optimization processes. The IOSO technology was employed as one of the robust optimization tools. This technology is also based on the widespread application of the response surface technique. Robust optimal solution (the Pareto set) between cooling effectiveness of the leading edge and the blade tip and aerodynamic efficiency was obtained as the result. At chosen point from the Pareto set (angle point) we calculated necessary levels of robust criteria characterized LE and blade tip cooling effectiveness and kinetic energy losses.


Author(s):  
W. S. Walsh ◽  
K. A. Thole ◽  
Chris Joe

Gas turbines are often subjected to conditions where dirt and sand are ingested into the engine during takeoffs and landings. Given most aero engines do not have filtration systems, particulates can be present in both the main gas path and coolant streams. Particulates can block coolant passages and film-cooling holes that lead to increased airfoil temperatures caused by reduced coolant available for a given pressure ratio across the cooling holes. This study investigated the effects of sand blockage on film-cooling holes placed in a leading edge coupon. The coupon was tested to determine the reduction in flow parameter for a range of pressure ratios, coolant temperatures, metal temperatures, number of cooling holes, sand amounts, and sand diameters. Depending upon conditions, blockages characterized by reduced coolant flow can be as high as 10%.


Author(s):  
Karsten Kusterer ◽  
Anas Elyas ◽  
Dieter Bohn ◽  
Takao Sugimoto ◽  
Ryozo Tanaka

Further improvement of the thermal efficiency of modern gas turbines can be achieved by a further reduction of the cooling air amount. Therefore, it is necessary to increase the cooling effectiveness so that the available cooling air fulfils the cooling task even if the amount has been reduced. In particular, the cooling effort for the vanes and blades of the first stage in a modern gas turbine is very high. The task of the film-cooling is to protect the blade material from the hot gas attack to the surface. Unfortunately, aerodynamic mixing processes are enhanced by secondary vortices in the cooling jets and, thus, the film-cooling effectiveness is reduced shortly behind the cooling air ejection through the holes. By improvement of the hole positioning the negative interaction effects can be reduced. The Double-jet Film-cooling (DJFC) Technology invented by the authors is one method to reach a significant increase in film-cooling effectiveness by establishing an anti-kidney vortex pair in a combined jet from the two jets starting from cylindrical ejection holes. This has been shown by numerical investigations and application to an industrial gas turbine as reported in recent publications. Whereas the original design application has been for moderate and high blowing ratios, the present numerical investigation shows that the DJFC is also applicable for lower blowing ratios (0.5<M<1.0) with only slight modification of the geometry of the configuration. The anti-kidney vortex concept can also be established for the lower blowing ratios and, as a result, a very high film-cooling effectiveness is reached not only behind the ejection holes but also for a very long distance downstream (> 30 hole diameters).


Author(s):  
N. Sundaram ◽  
K. A. Thole

The leading edge region along the endwall of a stator vane experiences high heat transfer rates resulting from the formation of horseshoe vortices. Typical gas turbine endwall designs include a leakage slot at the combustor-turbine interface as well as film-cooling holes. Past studies have documented the formation of a horseshoe vortex at the leading edge of a vane, but few studies have documented the flowfield in the presence of an interface slot and film-cooling jets. In this paper, a series of flowfield measurements are evaluated at the leading edge with configurations including: a baseline with neither film-cooling holes nor an upstream slot, a row of film-cooling holes and an interface slot, and a row of film-cooling holes in a trench and an interface slot. The results indicated the formation of a second vortex present for the case with film-cooling holes and a slot relative to the baseline study. In addition, turbulence intensity levels as high as 50% were measured at the leading edge with film-cooling holes and a slot compared to the 30% measured for the baseline study. A trench was shown to provide improved overall cooling relative to the no trench configuration as more of the coolant stayed attached to the endwall surface with the trench.


Sign in / Sign up

Export Citation Format

Share Document